2024年高考数学第一轮复习讲义第九章9.3 圆的方程(学生版+解析)_第1页
2024年高考数学第一轮复习讲义第九章9.3 圆的方程(学生版+解析)_第2页
2024年高考数学第一轮复习讲义第九章9.3 圆的方程(学生版+解析)_第3页
2024年高考数学第一轮复习讲义第九章9.3 圆的方程(学生版+解析)_第4页
2024年高考数学第一轮复习讲义第九章9.3 圆的方程(学生版+解析)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§9.3圆的方程考试要求1.理解确定圆的几何要素,在平面直角坐标系中,掌握圆的标准方程与一般方程.2.能根据圆的方程解决一些简单的数学问题与实际问题.知识梳理1.圆的定义和圆的方程定义平面上到________的距离等于______的点的集合叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C________半径为________一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)圆心C__________半径r=______________2.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)|MC|>r⇔M在________,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)|MC|=r⇔M在________,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)|MC|<r⇔M在________,即(x0-a)2+(y0-b)2<r2⇔M在圆内.常用结论1.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.2.圆心在过切点且与切线垂直的直线上.3.圆心在任一弦的垂直平分线上.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.()(2)(x-2)2+(y+1)2=a2(a≠0)表示以(2,1)为圆心,a为半径的圆.()(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()(4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则xeq\o\al(2,0)+yeq\o\al(2,0)+Dx0+Ey0+F>0.()教材改编题1.圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=22.若曲线C:x2+y2+2ax-4ay-10a=0表示圆,则实数a的取值范围为()A.(-2,0)B.(-∞,-2)∪(0,+∞)C.[-2,0]D.(-∞,-2]∪[0,+∞)3.下列各点中,在圆(x-1)2+(y+2)2=25的内部的是()A.(0,3) B.(3,3)C.(-2,2) D.(4,1)题型一圆的方程例1(1)(2022·全国乙卷)过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一个圆的方程为______________________________________________________________________________________________________________________________________________________________.(2)(2022·全国甲卷)设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为________________________.听课记录:____________________________________________________________________________________________________________________________________________________思维升华求圆的方程的常用方法(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;②选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.跟踪训练1(1)圆心在y轴上,半径长为1,且过点A(1,2)的圆的方程是()A.x2+(y-2)2=1 B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=4(2)若圆C经过坐标原点,且圆心在直线y=-2x+3上运动,当半径最小时,圆的方程为________.题型二与圆有关的轨迹问题例2已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求:(1)直角顶点C的轨迹方程;(2)直角边BC的中点M的轨迹方程.______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________思维升华求与圆有关的轨迹问题的常用方法(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.跟踪训练2(2023·宜昌模拟)已知定点M(1,0),N(2,0),动点P满足|PN|=eq\r(2)|PM|.(1)求动点P的轨迹C的方程;(2)已知点B(6,0),点A在轨迹C上运动,求线段AB上靠近点B的三等分点Q的轨迹方程.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________题型三与圆有关的最值问题命题点1利用几何性质求最值例3(2022·泉州模拟)已知实数x,y满足方程x2+y2-4x+1=0.求:(1)eq\f(y,x)的最大值和最小值;(2)y-x的最小值;(3)x2+y2的最大值和最小值.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________命题点2利用函数求最值例4(2023·湘潭质检)设点P(x,y)是圆x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0).则eq\o(PA,\s\up6(→))·eq\o(PB,\s\up6(→))的最大值为________.,则|eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))|的最大值为________.思维升华与圆有关的最值问题的求解方法(1)借助几何性质求最值:形如μ=eq\f(y-b,x-a),t=ax+by,(x-a)2+(y-b)2形式的最值问题.(2)建立函数关系式求最值:列出关于所求目标式子的函数关系式,然后根据关系式的特征选用配方法、判别式法、基本不等式法等求最值.(3)求解形如|PM|+|PN|(其中M,N均为动点)且与圆C有关的折线段的最值问题的基本思路:①“动化定”,把与圆上动点的距离转化为与圆心的距离;②“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.跟踪训练3(1)设P(x,y)是圆(x-2)2+y2=1上的任意一点,则(x-5)2+(y+4)2的最大值是()A.6B.25C.26D.36(2)若点P(x,y)在圆x2+y2-2x-2y+1=0上,则eq\f(y,x+1)的最大值为________.§9.3圆的方程考试要求1.理解确定圆的几何要素,在平面直角坐标系中,掌握圆的标准方程与一般方程.2.能根据圆的方程解决一些简单的数学问题与实际问题.知识梳理1.圆的定义和圆的方程定义平面上到定点的距离等于定长的点的集合叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)圆心Ceq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2),-\f(E,2)))半径r=eq\f(1,2)eq\r(D2+E2-4F)2.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)|MC|>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)|MC|=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)|MC|<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.常用结论1.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.2.圆心在过切点且与切线垂直的直线上.3.圆心在任一弦的垂直平分线上.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.(√)(2)(x-2)2+(y+1)2=a2(a≠0)表示以(2,1)为圆心,a为半径的圆.(×)(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.(√)(4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则xeq\o\al(2,0)+yeq\o\al(2,0)+Dx0+Ey0+F>0.(√)教材改编题1.圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2答案D解析因为圆心为(1,1)且过原点,所以该圆的半径r=eq\r(12+12)=eq\r(2),则该圆的方程为(x-1)2+(y-1)2=2.2.若曲线C:x2+y2+2ax-4ay-10a=0表示圆,则实数a的取值范围为()A.(-2,0)B.(-∞,-2)∪(0,+∞)C.[-2,0]D.(-∞,-2]∪[0,+∞)答案B解析由x2+y2+2ax-4ay-10a=0,得(x+a)2+(y-2a)2=5a2+10a,由该曲线表示圆,可知5a2+10a>0,解得a>0或a<-2.3.下列各点中,在圆(x-1)2+(y+2)2=25的内部的是()A.(0,3)B.(3,3)C.(-2,2)D.(4,1)答案D解析由(0-1)2+(3+2)2>25知(0,3)在圆外;由(3-1)2+(3+2)2>25知(3,3)在圆外;由(-2-1)2+(2+2)2=25知(-2,2)在圆上;由(4-1)2+(1+2)2<25知(4,1)在圆内.题型一圆的方程例1(1)(2022·全国乙卷)过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一个圆的方程为_____________________________________________________________________________________________________________________________________________________________.答案(x-2)2+(y-3)2=13或(x-2)2+(y-1)2=5或eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(4,3)))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(y-\f(7,3)))2=eq\f(65,9)或eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(8,5)))2+(y-1)2=eq\f(169,25)解析依题意设圆的方程为x2+y2+Dx+Ey+F=0,其中D2+E2-4F>0.若过(0,0),(4,0),(-1,1),则eq\b\lc\{\rc\(\a\vs4\al\co1(F=0,,16+4D+F=0,,1+1-D+E+F=0,))解得eq\b\lc\{(\a\vs4\al\co1(F=0,,D=-4,,E=-6,))满足D2+E2-4F>0,所以圆的方程为x2+y2-4x-6y=0,即(x-2)2+(y-3)2=13;若过(0,0),(4,0),(4,2),则eq\b\lc\{\rc\(\a\vs4\al\co1(F=0,,16+4D+F=0,,16+4+4D+2E+F=0,))解得eq\b\lc\{(\a\vs4\al\co1(F=0,,D=-4,,E=-2,))满足D2+E2-4F>0,所以圆的方程为x2+y2-4x-2y=0,即(x-2)2+(y-1)2=5;若过(0,0),(4,2),(-1,1),则eq\b\lc\{\rc\(\a\vs4\al\co1(F=0,,1+1-D+E+F=0,,16+4+4D+2E+F=0,))解得eq\b\lc\{(\a\vs4\al\co1(F=0,,D=-\f(8,3),,E=-\f(14,3),))满足D2+E2-4F>0,所以圆的方程为x2+y2-eq\f(8,3)x-eq\f(14,3)y=0,即eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(4,3)))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(y-\f(7,3)))2=eq\f(65,9);若过(-1,1),(4,0),(4,2),则eq\b\lc\{\rc\(\a\vs4\al\co1(1+1-D+E+F=0,,16+4D+F=0,,16+4+4D+2E+F=0,))解得eq\b\lc\{(\a\vs4\al\co1(F=-\f(16,5),,D=-\f(16,5),,E=-2,))满足D2+E2-4F>0,所以圆的方程为x2+y2-eq\f(16,5)x-2y-eq\f(16,5)=0,即eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(8,5)))2+(y-1)2=eq\f(169,25).(2)(2022·全国甲卷)设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为________.答案(x-1)2+(y+1)2=5解析方法一设⊙M的方程为(x-a)2+(y-b)2=r2,则eq\b\lc\{\rc\(\a\vs4\al\co1(2a+b-1=0,,3-a2+b2=r2,,a2+1-b2=r2,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(a=1,,b=-1,,r2=5,))∴⊙M的方程为(x-1)2+(y+1)2=5.方法二设⊙M的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),则Meq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2),-\f(E,2))),∴eq\b\lc\{(\a\vs4\al\co1(2·\b\lc\(\rc\)(\a\vs4\al\co1(-\f(D,2)))+\b\lc\(\rc\)(\a\vs4\al\co1(-\f(E,2)))-1=0,,9+3D+F=0,,1+E+F=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(D=-2,,E=2,,F=-3,))∴⊙M的方程为x2+y2-2x+2y-3=0,即(x-1)2+(y+1)2=5.方法三设A(3,0),B(0,1),⊙M的半径为r,则kAB=eq\f(1-0,0-3)=-eq\f(1,3),AB的中点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2),\f(1,2))),∴AB的垂直平分线方程为y-eq\f(1,2)=3eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(3,2))),即3x-y-4=0.联立eq\b\lc\{(\a\vs4\al\co1(3x-y-4=0,,2x+y-1=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(x=1,,y=-1,))∴M(1,-1),∴r2=|MA|2=(3-1)2+[0-(-1)]2=5,∴⊙M的方程为(x-1)2+(y+1)2=5.思维升华求圆的方程的常用方法(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;②选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.跟踪训练1(1)圆心在y轴上,半径长为1,且过点A(1,2)的圆的方程是()A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=4答案A解析根据题意可设圆的方程为x2+(y-b)2=1,因为圆过点A(1,2),所以12+(2-b)2=1,解得b=2,所以所求圆的方程为x2+(y-2)2=1.(2)若圆C经过坐标原点,且圆心在直线y=-2x+3上运动,当半径最小时,圆的方程为____________.答案eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(6,5)))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(y-\f(3,5)))2=eq\f(9,5)解析设圆心坐标为(a,-2a+3),则圆的半径r=eq\r(a-02+-2a+3-02)=eq\r(5a2-12a+9)=eq\r(5\b\lc\(\rc\)(\a\vs4\al\co1(a-\f(6,5)))2+\f(9,5)).当a=eq\f(6,5)时,rmin=eq\f(3\r(5),5).故所求圆的方程为eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(6,5)))2+eq\b\lc\(\rc\)(\a\vs4\al\co1(y-\f(3,5)))2=eq\f(9,5).题型二与圆有关的轨迹问题例2已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求:(1)直角顶点C的轨迹方程;(2)直角边BC的中点M的轨迹方程.解(1)方法一设C(x,y),因为A,B,C三点不共线,所以y≠0.因为AC⊥BC,且BC,AC斜率均存在,所以kAC·kBC=-1,又kAC=eq\f(y,x+1),kBC=eq\f(y,x-3),所以eq\f(y,x+1)·eq\f(y,x-3)=-1,化简得x2+y2-2x-3=0.因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).方法二设AB的中点为D,由中点坐标公式得D(1,0),由直角三角形的性质知|CD|=eq\f(1,2)|AB|=2.由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(由于A,B,C三点不共线,所以应除去与x轴的交点).所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).(2)设M(x,y),C(x0,y0),因为B(3,0),且M是线段BC的中点,所以由中点坐标公式得x=eq\f(x0+3,2),y=eq\f(y0+0,2),所以x0=2x-3,y0=2y.由(1)知,点C的轨迹方程为(x-1)2+y2=4(y≠0),将x0=2x-3,y0=2y代入得(2x-4)2+(2y)2=4,即(x-2)2+y2=1(y≠0).因此动点M的轨迹方程为(x-2)2+y2=1(y≠0).思维升华求与圆有关的轨迹问题的常用方法(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.跟踪训练2(2023·宜昌模拟)已知定点M(1,0),N(2,0),动点P满足|PN|=eq\r(2)|PM|.(1)求动点P的轨迹C的方程;(2)已知点B(6,0),点A在轨迹C上运动,求线段AB上靠近点B的三等分点Q的轨迹方程.解(1)设动点P的坐标为(x,y),因为M(1,0),N(2,0),且|PN|=eq\r(2)|PM|,所以eq\r(x-22+y2)=eq\r(2)·eq\r(x-12+y2),整理得x2+y2=2,所以动点P的轨迹C的方程为x2+y2=2.(2)设点Q的坐标为(x,y),点A的坐标为(xA,yA),因为Q是线段AB上靠近点B的三等分点,所以eq\o(AQ,\s\up6(→))=2eq\o(QB,\s\up6(→)),即(x-xA,y-yA)=2(6-x,-y),解得eq\b\lc\{\rc\(\a\vs4\al\co1(xA=3x-12,,yA=3y,))又点A在轨迹C上运动,由(1)有(3x-12)2+(3y)2=2,化简得(x-4)2+y2=eq\f(2,9),即点Q的轨迹方程为(x-4)2+y2=eq\f(2,9).题型三与圆有关的最值问题命题点1利用几何性质求最值例3(2022·泉州模拟)已知实数x,y满足方程x2+y2-4x+1=0.求:(1)eq\f(y,x)的最大值和最小值;(2)y-x的最小值;(3)x2+y2的最大值和最小值.解(1)如图,方程x2+y2-4x+1=0表示以点(2,0)为圆心,eq\r(3)为半径的圆.设eq\f(y,x)=k,即y=kx,则圆心(2,0)到直线y=kx的距离为半径时直线与圆相切,斜率取得最大、最小值.由eq\f(|2k|,\r(1+k2))=eq\r(3),解得k2=3,∴kmax=eq\r(3),kmin=-eq\r(3).∴eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(y,x)))max=eq\r(3),eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(y,x)))min=-eq\r(3).(2)设y-x=b,则y=x+b,当且仅当直线y=x+b与圆相切于第四象限时,截距b取最小值,由点到直线的距离公式,得eq\f(|2+b|,\r(2))=eq\r(3),即b=-2±eq\r(6),故(y-x)min=-2-eq\r(6).(3)x2+y2是圆上点与原点的距离的平方,设圆与x轴相交于点B和C′(点B在点C′左侧),则(x2+y2)max=|OC′|2=(2+eq\r(3))2=7+4eq\r(3),(x2+y2)min=|OB|2=(2-eq\r(3))2=7-4eq\r(3).命题点2利用函数求最值例4(2023·湘潭质检)设点P(x,y)是圆x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0).则eq\o(PA,\s\up6(→))·eq\o(PB,\s\up6(→))的最大值为________.答案12解析由题意,得eq\o(PA,\s\up6(→))=(2-x,-y),eq\o(PB,\s\up6(→))=(-2-x,-y),所以eq\o(PA,\s\up6(→))·eq\o(PB,\s\up6(→))=x2+y2-4,由于点P(x,y)是圆上的点,故其坐标满足方程x2+(y-3)2=1,故x2=-(y-3)2+1,所以eq\o(PA,\s\up6(→))·eq\o(PB,\s\up6(→))=-(y-3)2+1+y2-4=6y-12.易知2≤y≤4,所以当y=4时,eq\o(PA,\s\up6(→))·eq\o(PB,\s\up6(→))的值最大,最大值为6×4-12=12.,则|eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))|的最大值为________.答案10解析由题意,知eq\o(PA,\s\up6(→))=(-x,2-y),eq\o(PB,\s\up6(→))=(-x,-2-y),所以eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))=(-2x,-2y),由于点P(x,y)是圆上的点,故其坐标满足方程(x-3)2+y2=4,故y2=-(x-3)2+4,所以|eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))|=eq\r(4x2+4y2)=2eq\r(6x-5).由圆的方程(x-3)2+y2=4,易知1≤x≤5,所以当x=5时,|eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))|的值最大,最大值为2×eq\r(6×5-5)=10.思维升华与圆有关的最值问题的求解方法(1)借助几何性质求最值:形如μ=eq\f(y-b,x-a),t=ax+by,(x-a)2+(y-b)2形式的最值问题.(2)建立函数关系式求最值:列出关于所求目标式子的函数关系式,然后根据关系式的特征选用配方法、判别式法、基本不等式法等求最值.(3)求解形如|PM|+|PN|(其中M,N均为动点)且与圆C有关的折线段的最值问题的基本思路:①“动化定”,把与圆上动点的距离转化为与圆心的距离;②“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.跟踪训练3(1)设P(x,y)是圆(x-2)2+y2=1上的任意一点,则(x-5)2+(y+4)2的最大值是()A.6B.25C.26D.36答案D解析(x-5)2+(y+4)2表示点P(x,y)到(5,-4)的距离的平方,∵P(x,y)是圆(x-2)2+y2=1上的任意一点,∴(x-5)2+(y+4)2的最大值为圆心(2,0)到(5,-4)的距离与半径之和的平方,即[(x-5)2+(y+4)2]max=[eq\r(2-52+0+42)+1]2=36.(2)若点P(x,y)在圆x2+y2-2x-2y+1=0上,则eq\f(y,x+1)的最大值为________.答案eq\f(4,3)解析圆x2+y2-2x-2y+1=0可化为(x-1)2+(y-1)2=1,圆心为(1,1),半径为1,eq\f(y,x+1)表示圆上的点(x,y)与点(-1,0)连线的斜率,设过点(-1,0)的圆的切线斜率为k,则圆的切线方程为y-0=k(x+1),即kx-y+k=0,由圆心到切线的距离等于半径,可得eq\f(|k-1+k|,\r(k2+1))=1,解得k=0或k=eq\f(4,3),所以0≤k≤eq\f(4,3),即eq\f(y,x+1)的最大值为eq\f(4,3).课时精练1.(2023·六安模拟)圆心为(1,-2),半径为3的圆的方程是()A.(x+1)2+(y-2)2=9B.(x-1)2+(y+2)2=3C.(x+1)2+(y-2)2=3D.(x-1)2+(y+2)2=9答案D解析因为圆心为(1,-2),半径为3,所以圆的方程为(x-1)2+(y+2)2=9.2.(2023·宁德模拟)已知点M(3,1)在圆C:x2+y2-2x+4y+2k+4=0外,则k的取值范围为()A.-6<k<eq\f(1,2) B.k<-6或k>eq\f(1,2)C.k>-6 D.k<eq\f(1,2)答案A解析∵圆C:x2+y2-2x+4y+2k+4=0,∴圆C的标准方程为(x-1)2+(y+2)2=1-2k,∴圆心坐标为(1,-2),半径r=eq\r(1-2k).若点M(3,1)在圆C:x2+y2-2x+4y+2k+4=0外,则满足eq\r(3-12+1+22)>eq\r(1-2k),且1-2k>0,即13>1-2k且k<eq\f(1,2),即-6<k<eq\f(1,2).3.若△AOB的三个顶点坐标分别为A(2,0),B(0,-4),O(0,0),则△AOB外接圆的圆心坐标为()A.(1,-1) B.(-1,-2)C.(1,-2) D.(-2,1)答案C解析由题意得△AOB是直角三角形,且∠AOB=90°.所以△AOB的外接圆的圆心就是线段AB的中点,设圆心坐标为(x,y),由中点坐标公式得x=eq\f(2+0,2)=1,y=eq\f(0-4,2)=-2.故所求圆心坐标为(1,-2).4.圆C:x2+y2-2x-3=0关于直线l:y=x对称的圆的方程为()A.x2+y2-2y-3=0 B.x2+y2-2y-15=0C.x2+y2+2y-3=0 D.x2+y2+2y-15=0答案A解析由题意,得圆C:(x-1)2+y2=4的圆心为(1,0),半径为2,故其关于直线l:y=x对称的圆的圆心为(0,1),半径为2,故对称圆的方程为x2+(y-1)2=4,即x2+y2-2y-3=0.5.点M,N是圆x2+y2+kx+2y-4=0上的不同两点,且点M,N关于直线l:x-y+1=0对称,则该圆的半径等于()A.2eq\r(2)B.eq\r(2)C.3D.9答案C解析圆x2+y2+kx+2y-4=0的标准方程为eq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(k,2)))2+(y+1)2=5+eq\f(k2,4),则圆心坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(k,2),-1)),半径为r=eq\r(5+\f(k2,4)),因为点M,N在圆x2+y2+kx+2y-4=0上,且点M,N关于直线l:x-y+1=0对称,所以直线l:x-y+1=0经过圆心,所以-eq\f(k,2)+1+1=0,解得k=4.所以圆的半径r=eq\r(5+\f(k2,4))=3.6.自圆C:(x-3)2+(y+4)2=4外一点P引该圆的一条切线,切点为Q,PQ的长度等于点P到原点O的距离,则点P的轨迹方程为()A.8x-6y-21=0 B.8x+6y-21=0C.6x+8y-21=0 D.6x-8y-21=0答案D解析由题意得,圆心C的坐标为(3,-4),半径r=2,如图所示.设P(x0,y0),由题意可知|PQ|=|PO|,且PQ⊥CQ,所以|PO|2+r2=|PC|2,所以xeq\o\al(2,0)+yeq\o\al(2,0)+4=(x0-3)2+(y0+4)2,即6x0-8y0-21=0,结合选项知D符合题意.7.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标为________,半径为________.答案(-2,-4)5解析由圆的一般方程的形式知,a+2=a2,解得a=2或a=-1.当a=2时,该方程可化为x2+y2+x+2y+eq\f(5,2)=0,∵D2+E2-4F=12+22-4×eq\f(5,2)<0,∴a=2不符合题意;当a=-1时,方程可化为x2+y2+4x+8y-5=0,即(x+2)2+(y+4)2=25,∴圆心坐标为(-2,-4),半径为5.8.已知等腰△ABC,其中顶点A的坐标为(0,0),底边的一个端点B的坐标为(1,1),则另一个端点C的轨迹方程为______________________.答案x2+y2=2(除去点(1,1)和点(-1,-1))解析设C(x,y),根据在等腰△ABC中|AB|=|AC|,可得(x-0)2+(y-0)2=(1-0)2+(1-0)2,即x2+y2=2.考虑到A,B,C三点要构成三角形,因此点C不能为(1,1)和(-1,-1).所以点C的轨迹方程为x2+y2=2(除去点(1,1)和点(-1,-1)).9.已知圆心为C的圆经过点A(1,1)和点B(2,-2),且圆心C在直线l:x-y+1=0上.线段PQ的端点P的坐标是(5,0),端点Q在圆C上运动,求线段PQ的中点M的轨迹方程.解设点D为线段AB的中点,直线m为线段AB的垂直平分线,则Deq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2),-\f(1,2))).又kAB=-3,所以km=eq\f(1,3),所以直线m的方程为x-3y-3=0.由eq\b\lc\{\rc\(\a\vs4\al\co1(x-3y-3=0,,x-y+1=0,))得圆心C(-3,-2),则半径r=|CA|=eq\r(-3-12+-2-12)=5,所以圆C的方程为(x+3)2+(y+2)2=25.设点M(x,y),Q(x0,y0).因为点P的坐标为(5,0),所以eq\b\lc\{(\a\vs4\al\co1(x=\f(x0+5,2),,y=\f(y0+0,2),))即eq\b\lc\{\rc\(\a\vs4\al\co1(x0=2x-5,,y0=2y.))又点Q(x0,y0)在圆C:(x+3)2+(y+2)2=25上运动,所以(x0+3)2+(y0+2)2=25,即(2x-5+3)2+(2y+2)2=25.整理得(x-1)2+(y+1)2=eq\f(25,4).即所求线段PQ的中点M的轨迹方程为(x-1)2+(y+1)2=eq\f(25,4).10.已知圆C1经过点A(1,3)和B(2,4),圆心在直线2x-y-1=0上.(1)求圆C1的方程;(2)若M,N分别是圆C1和圆C2:(x+3)2+(y+4)2=9上的点,点P是直线x+y=0上的点,求|PM|+|PN|的最小值,以及此时点P的坐标.解(1)由题意知AB的中点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2),\f(7,2))),kAB=eq\f(4-3,2-1)=1,∴线段AB的垂直平分线为y=5-x,联立eq\b\lc\{\rc\(\a\vs4\al\co1(y=5-x,,y=2x-1,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(x=2,,y=3,))即圆C1的圆心坐标为(2,3),半径r=1,其方程为(x-2)2+(y-3)2=1.(2)注意到点C1(2,3)和点C2(-3,-4)在直线x+y=0的两侧,直线x+y=0与两圆分别相离,如图所示.∴|PM|+|PN|≥|PC1|-1+|PC2|-3≥|C1C2|-4=eq\r(74)-4,当且仅当M,N,P在线段C1C2上时取等号,∴|PM|+|PN|的最小值为eq\r(74)-4.此时点P为直线C1C2与x+y=0的交点,过C1,C2的直线方程为7x-5y+1=0,联立eq\b\lc\{(\a\vs4\al\co1(x+y=0,,7x-5y+1=0,))解得eq\b\lc\{\rc\(\a\vs4\al\co1(x=-\f(1,12),,y=\f(1,12),))∴点P的坐标为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论