2023届辽宁省锦州市名校数学九年级第一学期期末考试模拟试题含解析_第1页
2023届辽宁省锦州市名校数学九年级第一学期期末考试模拟试题含解析_第2页
2023届辽宁省锦州市名校数学九年级第一学期期末考试模拟试题含解析_第3页
2023届辽宁省锦州市名校数学九年级第一学期期末考试模拟试题含解析_第4页
2023届辽宁省锦州市名校数学九年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,将绕点旋转得到,设点的坐标为,则点的坐标为()A. B.C. D.2.已知,则=()A. B. C. D.3.抛物线y=x2+bx+c过(-2,0),(2,0)两点,那么抛物线对称轴为()A.x=1 B.y轴 C.x=-1 D.x=-24.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(

)A.9分 B.8分 C.7分 D.6分5.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点为60°角与直尺交点,点为光盘与直尺唯一交点,若,则光盘的直径是().A. B. C.6 D.36.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.有一组邻边相等、一个角是直角的四边形是正方形7.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为A.9 B.6 C.4 D.38.下列事件中,是随机事件的是()A.两条直线被第三条直线所截,同位角相等B.任意一个四边形的外角和等于360°C.早上太阳从西方升起D.平行四边形是中心对称图形9.如图,,则下列比例式错误的是()A. B. C. D.10.下列事件属于必然事件的是()A.篮球队员在罚球线上投篮一次,未投中 B.掷一次骰子,向上一面的点数是6C.任意画一个五边形,其内角和是540° D.经过有交通信号灯的路口,遇到红灯二、填空题(每小题3分,共24分)11.投掷一枚材质均匀的正方体骰子,向上的一面出现的点数是2的倍数的概率等于_________.12.如图,点B是反比例函数y=(x>0)的图象上任意一点,AB∥x轴并交反比例函数y=﹣(x<0)的图象于点A,以AB为边作平行四边形ABCD,其中C、D在x轴上,则平行四边形ABCD的面积为_____.13.如图,在中,,,,点为边上一点,,将绕点旋转得到(点、、分别与点、、对应),使,边与边交于点,那么的长等于__________.14..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是_______.15.⊙O的半径为10cm,点P到圆心O的距离为12cm,则点P和⊙O的位置关系是_____.16.在中,,则∠C的度数为____.17.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m个白球和4个黑球,使得摸到白球的概率为,则m=__.18.将二次函数的图像向左平移个单位得到,则函数的解析式为______.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OA=2,双曲线经过点A.将△AOB绕点A顺时针旋转,使点O的对应点D落在x轴的负半轴上,若AB的对应线段AC恰好经过点O.(1)求点A的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由20.(6分)某图书馆2014年年底有图书20万册,预计2016年年底图书增加到28.8万册.(1)求该图书馆这两年图书册数的年平均增长率;(2)如果该图书馆2017年仍保持相同的年平均增长率,请你预测2017年年底图书馆有图书多少万册?21.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-2,4),B(4,4),C(6,0).(1)△ABC的面积是.(2)请以原点O为位似中心,画出△A'B'C',使它与△ABC的相似比为1:2,变换后点A、B的对应点分别为点A'、B',点B'在第一象限;(3)若P(a,b)为线段BC上的任一点,则变换后点P的对应点P'的坐标为.22.(8分)如图,的直径为,点在上,点,分别在,的延长线上,,垂足为,.(1)求证:是的切线;(2)若,,求的长.23.(8分)某校九年级举行毕业典礼,需要从九年级班的名男生名女生中和九年级班的名男生名女生中各随机选出名主持人.(1)用树状图或列表法列出所有可能情形;(2)求名主持人恰好男女的概率.24.(8分)某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量(件与销售单价(元之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量与销售单价之间的函数关系式;(2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?(3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?25.(10分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自年起逐月增加,据统计该商城月份销售自行车辆,月份销售了辆.(1)求这个运动商城这两个月的月平均增长率是多少?(2)若该商城前个月的自行车销量的月平均增长率相同,问该商城月份卖出多少辆自行车?26.(10分)如图,在平面直角坐标系中,已知三个顶点的坐标分别是,,.(1)以点为位似中心,将缩小为原来的得到,请在轴右侧画出;(2)的正弦值为.

参考答案一、选择题(每小题3分,共30分)1、B【分析】由题意可知,点C为线段A的中点,故可根据中点坐标公式求解.对本题而言,旋转后的纵坐标与旋转前的纵坐标互为相反数,(旋转后的横坐标+旋转前的横坐标)÷2=-1,据此求解即可.【详解】解:∵绕点旋转得到,点的坐标为,∴旋转后点A的对应点的横坐标为:,纵坐标为-b,所以旋转后点的坐标为:.故选:B.【点睛】本题考查了旋转变换后点的坐标规律探求,属于常见题型,掌握求解的方法是解题的关键.2、B【分析】由得到x=,再代入计算即可.【详解】∵,∴x=,∴=.故选B.【点睛】考查了求代数式的值,解题关键是根据得到x=,再代入计算即可.3、B【分析】由二次函数图像与x轴的交点坐标,即可求出抛物线的对称轴.【详解】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的交点是(-2,0)和(2,0),

∴这条抛物线的对称轴是:x=,即对称轴为y轴;故选:B.【点睛】本题考查了抛物线与x轴的交点问题.对于求抛物线的对称轴的题目,可以用公式法,也可以将函数解析式化为顶点式求得,或直接利用公式x=求解.4、C【解析】分析:根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为C.点睛:本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5、A【分析】设三角板与圆的切点为C,连接,由切线长定理得出、,根据可得答案.【详解】解:设三角板与圆的切点为C,连接OA、OB,如下图所示:由切线长定理知,∴,在中,∴∴光盘的直径为,故选.【点睛】本题主要考查切线的性质,掌握切线长定理和解直角三角形的应用是解题关键.6、D【分析】利用正方形的判定方法分别判断得出即可.【详解】A、一组邻边相等的矩形是正方形,说法正确,不合题意;B、对角线互相垂直的矩形是正方形,说法正确,不合题意;C、对角线相等的菱形是正方形,说法正确,不合题意;D、有一组邻边相等、一个角是直角的平行四边形是正方形,原说法错误,符合题意;故选:D.【点睛】本题考查了正方形的判定问题,掌握正方形的性质以及判定定理是解题的关键.7、D【分析】已知ab=8可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方形的面积,根据面积利用算术平方根求小正方形的边长.【详解】故选D.【点睛】本题考查勾股定理的推导,有较多变形题,解题的关键是找出图形间面积关系,同时熟练运用勾股定理以及完全平方公式,本题属于基础题型.8、A【分析】根据随机事件的概念对每一事件进行分析.【详解】选项A,只有当两条直线为平行线时,同位角才相等,故不确定为随机事件.选项B,不可能事件.选项C,不可能事件选项D,必然事件.故选A【点睛】本题考查了随机事件的概念.9、A【分析】由题意根据平行线分线段成比例定理写出相应的比例式,即可得出答案.【详解】解:∵DE∥BC,∴,,,∴A错误;故选:A.【点睛】本题考查平行线分线段成比例定理,熟练平行线分线段成比例定理,关键是找准对应关系,避免错选其他答案.10、C【分析】必然事件就是一定发生的事件,根据定义即可判断.【详解】解:A、篮球队员在罚球线上投篮一次,未投中,是随机事件.B、掷一次骰子,向上一面的点数是6,是随机事件.C、任意画一个五边形,其内角和是540°,是必然事件.D、经过有交通信号灯的路口,遇到红灯,是随机事件.故选:C.【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每小题3分,共24分)11、【解析】分析:利用概率公式:一般地,如果在一次试验中,有n种可能得结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=,即要求解.详解:∵骰子的六个面上分别刻有1到6的点数,点数为2的倍数的有3个,分别为2、4、6;∴掷得朝上一面的点数为2的倍数的概率为:.故答案为:.点睛:本题考查了概率公式的知识,解题的关键是利用概率=所求情况数与总数之比进行求解.12、1.【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得AB的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解【详解】设A的纵坐标是b,则B的纵坐标也是b把y=b代入y=得,b=则x=,即B的横坐标是同理可得:A的横坐标是:则AB=-()=则S=×b=1.故答案为1【点睛】此题考查反比例函数系数k的几何意义,解题关键在于设A的纵坐标为b13、【分析】如图,作PH⊥AB于H.利用相似三角形的性质求出PH,再证明四边形PHGC′是矩形即可解决问题.【详解】如图,作PH⊥AB于H.

在Rt△ABC中,∠C=90°,AC=5,sinB=,

∴=,

∴AB=13,BC==12,

∵PC=3,

∴PB=9,

∵∠BPH∽△BAC,

∴,

∴,

∴PH=,

∵AB∥B′C′,

∴∠HGC′=∠C′=∠PHG=90°,

∴四边形PHGC′是矩形,

∴CG′=PH=,

∴A′G=5-=,

故答案为.【点睛】此题考查旋转变换,平行线的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14、4【解析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC==4,故答案为4.【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出OA的长是解本题的关键.15、点P在⊙O外【分析】根据点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解:∵⊙O的半径r=10cm,点P到圆心O的距离OP=12cm,∴OP>r,∴点P在⊙O外,故答案为点P在⊙O外.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.16、【分析】先根据平方、绝对值的非负性求得、,再利用锐角三角函数确定、的度数,最后根据直角三角形内角和求得.【详解】解:∵∴∴∴∴.故答案是:【点睛】本题考查了平方、绝对值的非负性,锐角三角函数以及三角形内角和,熟悉各知识点是解题的关键.17、1【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m=1,经检验m=1是原分式方程的根,故答案为1.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.18、【分析】直接将函数解析式写成顶点式,再利用平移规律得出答案.【详解】解:,将二次函数的图象先向左平移1个单位,得到的函数的解析式为:,故答案为:.【点睛】此题主要考查了二次函数与几何变换,正确掌握平移规律(上加下减,左加右减)是解题关键.三、解答题(共66分)19、(1),双曲线的解析式为;(2)点在双曲线上,理由见解析.【分析】(1)根据旋转的性质和平行线的性质,得到,得到△AOD是等边三角形,根据特殊角的三角函数,求出点A的坐标,然后得到双曲线的解析式;(2)先求出OC的长度,然后利用特殊角的三角函数求出点C的坐标,然后进行判断即可.【详解】解:(1)过点A作轴,垂足为.∵轴,.有旋转的性质可知,...为等边三角形..,.点的坐标为.由题意知,,.双曲线的解析式为:.(2)点在双曲线上,理由如下:过点作轴,垂足为.由(1)知,...,.点的坐标为.将代入中,.点在双曲线上.【点睛】本题考查了反比例函数图象上点的坐标特征,旋转的性质,等边三角形的判定和性质,特殊角的三角函数等,求得△AOD是等边三角形是解题的关键.20、(1)20%(2)34.56【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书20(1+x)2万册,即可列方程求解;(2)利用求得的百分率,进一步求得2017年年底图书馆存图书数量即可.试题解析:(1)设年平均增长率为x,根据题意得20(1+x)2=28.8,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去)答:该图书馆这两年图书册数的年平均增长率为20%;(2)28.8(1+0.2)=34.56(万册)答:预测2016年年底图书馆存图书34.56万册.考点:一元二次方程的应用21、(1)12;(2)作图见详解;(3).【分析】(1)先以AB为底,计算三角形的高,利用面积公式即可求出△ABC的面积;(2)根据题意利用位似中心相关方法,画出△A'B'C',使它与△ABC的相似比为1:2即可;(3)根据(2)的作图,利用相似比为1:2,直接观察即可得到答案.【详解】解:(1)由△ABC的顶点坐标分别为A(-2,4),B(4,4),C(6,0),可知底AB=6,高为4,所以△ABC的面积为12;(2);(3)根据相似比为1:2,可知P.【点睛】本题主要考查作图-位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.22、(1)见解析;(2)【分析】(1)连接OC,根据三角形的内角和得到∠EDC+∠ECD=90°,根据等腰三角形的性质得到∠A=∠ACO,得到∠OCD=90°,于是得到结论;

(2)根据已知条件得到OC=OB=AB=2,根据勾股定理即可得到结论.【详解】(1)证明:连接OC,

∵DE⊥AE,

∴∠E=90°,

∴∠EDC+∠ECD=90°,

∵∠A=∠CDE,

∴∠A+∠DCE=90°,

∵OC=OA,

∴∠A=∠ACO,

∴∠ACO+∠DCE=90°,

∴∠OCD=90°,

∴OC⊥CD,

∴CD是⊙O的切线;

(2)解:∵AB=4,BD=3,

∴OC=OB=AB=2,

∴OD=2+3=5,

∴CD===.【点睛】本题考查了切线的判定和性质,勾股定理,等腰三角形的性质,平角的定义,熟练掌握切线的判定定理是解题的关键.23、(1)答案见解析;(2)【分析】(1)首先根据题意列表,由树形法可得所有等可能的结果;(2)由选出的是2名主持人恰好1男1女的情况,根据概率公式即可求得解.【详解】解:(1)用树状图表示如下:(A表示男生,B表示女生)由树状图知共有6种等可能结果(2)由树状图知:2名主持人1男1女有3种,即(A1,B2),(A1,B2)(A2,B1),所以P(恰好一男一女)=【点睛】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比.24、(1)y=-2x+200;(2)100件或20件;(3)销售单价定为65元时,该超市每天的利润最大,最大利润1750元【分析】(1)将点(40,120)、(60,80)代入一次函数表达式,即可求解;(2)由题意得(x-40)(-2x+200)=1000,解不等式即可得到结论;(3)由题意得w=(x-40)(-2x+200)=-2(x-70)2+1800,即可求解.【详解】(1)设y与销售单价x之间的函数关系式为:y=kx+b,

将点(4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论