版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省无棣县鲁北高新技术开发区实验学校九上数学期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,网格中的两个三角形是位似图形,它们的位似中心是()A.点A B.点B C.点C D.点D2.已知二次函数y=,设自变量的值分别为x1,x2,x3,且-3<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系是()A.y1>y2>y3 B.y1<y2<y3 C.y2>y3>y1 D.y2<y3<y13.如图,一条抛物线与轴相交于、两点(点在点的左侧),其顶点在线段上移动.若点、的坐标分别为、,点的横坐标的最大值为,则点的横坐标的最小值为()A. B. C. D.4.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28° B.32° C.42° D.52°5.下列命题正确的是()A.对角线相等四边形是矩形B.相似三角形的面积比等于相似比C.在反比例函数图像上,随的增大而增大D.若一个斜坡的坡度为,则该斜坡的坡角为6.下列方程中,为一元二次方程的是()A.x=2 B.x+y=3 C. D.7.抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是()A. B.C. D.8.如图,内接于⊙,,,则⊙半径为()A.4 B.6 C.8 D.129.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86分,方差如下表,你认为派谁去参赛更合适()选手甲乙丙丁方差1.52.63.53.68A.甲 B.乙 C.丙 D.丁10.某正多边形的一个外角的度数为60°,则这个正多边形的边数为()A.6 B.8 C.10 D.12二、填空题(每小题3分,共24分)11.若是关于的一元二次方程,则__________.12.如图示,半圆的直径,,是半圆上的三等分点,点是的中点,则阴影部分面积等于______.13.如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数y=kx(x<0)的图象经过点A,若S△AOB=3,则k的值为________14.若关于的一元二次方程没有实数根,则的取值范围是__________.15.方程和方程同解,________.16.计算:2sin245°﹣tan45°=______.17.已知,则=__________.18.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程()与乙车行驶时间()之间的函数图象如图所示,则下列说法:①②甲的速度是60km/h;③乙出发80min追上甲;④乙车在货站装好货准备离开时,甲车距B地150km;⑤当甲乙两车相距30km时,甲的行驶时间为1h、3h、h;其中正确的是__________.三、解答题(共66分)19.(10分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/下降到12月份的11340元/.(1)求11、12两月份平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/?请说明理由20.(6分)某次足球比赛,队员甲在前场给队友乙掷界外球.如图所示:已知两人相距8米,足球出手时的高度为2.4米,运行的路线是抛物线,当足球运行的水平距离为2米时,足球达到最大高度4米.请你根据图中所建坐标系,求出抛物线的表达式.21.(6分)如图,在Rt△ABC中,∠C=90°,点O是斜边AB上一定点,到点O的距离等于OB的所有点组成图形W,图形W与AB,BC分别交于点D,E,连接AE,DE,∠AED=∠B.(1)判断图形W与AE所在直线的公共点个数,并证明.(2)若,,求OB.22.(8分)已知抛物线的解析式是y=x1﹣(k+1)x+1k﹣1.(1)求证:此抛物线与x轴必有两个不同的交点;(1)若抛物线与直线y=x+k1﹣1的一个交点在y轴上,求该二次函数的顶点坐标.23.(8分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.求作:直线AD,使得AD∥l.作法:如图2,①在直线l上任取一点B,连接AB;②以点B为圆心,AB长为半径画弧,交直线l于点C;③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);④作直线AD.所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)证明:连接CD.∵AD=CD=__________=__________,∴四边形ABCD是().∴AD∥l().24.(8分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为______;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.25.(10分)综合与探究:如图所示,在平面直角坐标系中,直线与反比例函数的图象交于,两点,过点作轴于点,过点作轴于点.
(1)求,的值及反比例函数的函数表达式;(2)若点在线段上,且,请求出此时点的坐标;(3)小颖在探索中发现:在轴正半轴上存在点,使得是以为顶角的等腰三角形.请你直接写出点的坐标.26.(10分)如图,直线y=x+2与抛物线y=ax2+bx+6相交于A(,)和B(4,m),直线AB交x轴于点E,点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式.(2)连结AC、BC,是否存在一点P,使△ABC的面积等于14?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)若△PAC与△PDE相似,求点P的坐标.
参考答案一、选择题(每小题3分,共30分)1、D【分析】利用对应点的连线都经过同一点进行判断.【详解】如图,位似中心为点D.故选D.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.2、A【分析】对于开口向下的二次函数,在对称轴的右侧为减函数.【详解】解:∵二次函数y=∴对称轴是x=−,函数开口向下,
而对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小,
∵-1<x1<x2<x1,
∴y1,y2,y1的大小关系是y1>y2>y1.
故选:A.考点:二次函数的性质3、C【分析】根据顶点在线段上移动,又知点、的坐标分别为、,再根据平行于轴,之间距离不变,点的横坐标的最大值为,分别求出对称轴过点和时的情况,即可判断出点横坐标的最小值.【详解】根据题意知,点的横坐标的最大值为,此时对称轴过点,点的横坐标最大,此时的点坐标为,当对称轴过点时,点的横坐标最小,此时的点坐标为,点的坐标为,故点的横坐标的最小值为,故选:C.【点睛】本题考查了抛物线与轴的交点,二次函数的图象与性质.解答本题的关键是理解二次函数在平行于轴的直线上移动时,两交点之间的距离不变.4、C【详解】∵△ABC∽△DEF,∴∠B=∠E,在△ABC中,∠A=110°,∠C=28°,∴∠B=180°-∠A-∠C=42°,∴∠E=42°,故选C.5、D【分析】根据矩形的判断定理、相似三角形的性质、反比例函数的性质、坡度的定义及特殊的三角函数值解答即可.【详解】对角线相等的平行四边形是矩形,故A错误;相似三角形的面积比等于相似比的平方,故B错误;在反比例函数图像上,在每个象限内,随的增大而增大,故C错误;若一个斜坡的坡度为,则tan坡角=,该斜坡的坡角为,故D正确.故选:D【点睛】本题考查的是矩形的判断定理、相似三角形的性质、反比例函数的性质、坡度的定义及特殊的三角函数值,熟练的掌握各图形及函数的性质是关键.6、C【解析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、x=2是一元一次方程,故A错误;B、x+y=3是二元一次方程,故B错误;C、是一元二次方程,故C正确;D、是分式方程,故D错误;故选:C.【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是关键.7、D【分析】可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A.一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B.由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C.由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D.由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选:D.【点睛】本题考查了抛物线和直线的性质,用假设法来解答这种数形结合题是一种很好的方法.8、C【分析】连接OB,OC,根据圆周角定理求出∠BOC的度数,再由OB=OC判断出△OBC是等边三角形,由此可得出结论.【详解】解:连接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=1,∴△OBC是等边三角形,∴OB=BC=1.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.9、A【分析】根据方差的意义即可得.【详解】方差越小,表示成绩波动性越小、越稳定观察表格可知,甲的方差最小,则派甲去参赛更合适故选:A.【点睛】本题考查了方差的意义,掌握理解方差的意义是解题关键.10、A【分析】根据外角和计算边数即可.【详解】∵正多边形的外角和是360,∴,故选:A.【点睛】此题考查正多边形的性质,正多边形的外角和,熟记正多边形的特点即可正确解答.二、填空题(每小题3分,共24分)11、1【分析】根据一元二次方程的定义可知的次数为2,列出方程求解即可得出答案.【详解】解:∵是关于的一元二次方程,∴,解得:m=1,故答案为:1.【点睛】本题重点考查一元二次方程定义,理解一元二次方程的三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(1)是整式方程;其中理解特点(2)是解决这题的关键.12、【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD的面积,然后计算扇形面积就可.【详解】连接OC、OD、CD,如图所示:∵△COD和△CDE等底等高,∴S△COD=S△ECD.∵点C,D为半圆的三等分点,∴∠COD=180°÷3=60°,∴阴影部分的面积=S扇形COD=.故答案为.【点睛】此题主要考查了扇形面积求法,利用已知得出理解阴影部分的面积等于扇形OCD的面积是解题关键.13、-33【解析】如图所示,过点A作AD⊥OD,根据∠AOB=30°,AB=BO,可得∠DAB=60°,∠OAB=30°,所以∠BAD=30°,在Rt△ADB中,sin∠BAD=BDAB,即sin30°=BDAB=12,因为AB=BO,所以BDBO=12,所以S△ADBS△ABO=114、【分析】根据根判别式可得出关于的一元一次不等式组,解不等式组即可得出结论.【详解】由于关于一元二次方程没有实数根,∵,,,∴,解得:.故答案为:.【点睛】本题考查了一元二次方程为常数)的根的判别式.当0,方程有两个不相等的实数根;当0,方程有两个相等的实数根;当0,方程没有实数根.15、【解析】分别求解两个方程的根即可.【详解】解:,解得x=3或m;,解得x=3或-1,则m=-1,故答案为:-1.【点睛】本题考查了运用因式分解法解一元二次方程.16、0【解析】原式==0,故答案为0.17、【分析】根据比例的性质,化简求值即可.【详解】故答案为:.【点睛】本题主要考察比例的性质,解题关键是根据比例的性质化简求值.18、②③【分析】根据一次函数的性质和该函数的图象对各项进行求解即可.【详解】∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),即①不成立;∵40分钟=小时,∴甲车的速度为460÷(7+)=60(千米/时),即②成立;设乙车刚出发时的速度为x千米/时,则装满货后的速度为(x﹣50)千米/时,根据题意可知:4x+(7﹣4.5)(x﹣50)=460,解得:x=1.乙车发车时,甲车行驶的路程为60×=40(千米),乙车追上甲车的时间为40÷(1﹣60)=(小时),小时=80分钟,即③成立;乙车刚到达货站时,甲车行驶的时间为(4+)小时,此时甲车离B地的距离为460﹣60×(4+)=180(千米),即④不成立.设当甲乙两车相距30km时,甲的行驶时间为x小时,由题意可得1)乙车未出发时,即解得∵∴是方程的解2)乙车出发时间为解得解得3)乙车出发时间为解得∵所以不成立4)乙车出发时间为解得故当甲乙两车相距30km时,甲的行驶时间为h、1h、3h、h,故⑤不成立故答案为:②③.【点睛】本题考查了两车的路程问题,掌握一次函数的性质是解题的关键.三、解答题(共66分)19、(1)10%;(1)会跌破10000元/m1.【分析】(1)设11、11两月平均每月降价的百分率是x,那么11月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.【详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x)1=0.81,∴x1=0.1=10%,x1=1.9(不合题意,舍去)答:11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m1.如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x)1=11340×0.81=9184.5<10000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m1.【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.20、y=-0.4x2+4【分析】根据题意设抛物线的表达式为y=ax2+4(),代入(-2,2.4),即可求出a.【详解】解:设y=ax2+4()∵图象经过(-2,2.4)∴4a+4=2.4a=-0.4∴表达式为y=-0.4x2+4【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型.21、(2)有一个公共点,证明见解析;(2).【分析】(2)先根据题意作出图形W,再作辅助线,连接OE,证明AE是圆O的切线即可;(2)先利用解直角三角形的知识求出CE=2,从而求出BE=2.再由AC∥DE得出,把各线段的长代入即可求出OB的值.【详解】(2)判断有一个公共点证明:连接OE,如图.∵BD是⊙O的直径,∴∠DEB=90°.∵OE=OB,∴∠OEB=∠B.又∵∠AED=∠B,∴∠AED=∠OEB.∴∠AEO=∠AED+∠DEO=∠OEB+∠DEO=∠DEB=90°.∴AE是⊙O的切线.∴图形W与AE所在直线有2个公共点.(2)解:∵∠C=90°,,,∴AC=2,.∵∠DEB=90°,∴AC∥DE.∴∠CAE=∠AED=B.在Rt△ACE中,∠C=90°,AC=2,∴CE=2.∴BE=2.∵AC∥DE∴.∴,∴.【点睛】本题考查了圆的综合知识,掌握相关知识并灵活运用是解题的关键.22、(1)此抛物线与x轴必有两个不同的交点;(1)(,﹣).【分析】(1)由△=[-(k+1)]1-4×1×(1k-1)=k1-4k+11=(k-1)1+8>0可得答案;
(1)先根据抛物线与直线y=x+k1-1的一个交点在y轴上得出1k-1=k1-1,据此求得k的值,再代入函数解析式,配方成顶点式,从而得出答案.【详解】(1)∵△=[﹣(k+1)]1﹣4×1×(1k﹣1)=k1﹣4k+11=(k﹣1)1+8>0,∴此抛物线与x轴必有两个不同的交点;(1)∵抛物线与直线y=x+k1﹣1的一个交点在y轴上,∴1k﹣1=k1﹣1,解得k=1,则抛物线解析式为y=x1﹣3x=(x﹣)1﹣,所以该二次函数的顶点坐标为(,﹣).【点睛】本题主要考查的是抛物线与x轴的交点,解题的关键是掌握二次函数y=ax1+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax1+bx+c=0根之间的关系及熟练求二次函数的顶点式.23、BC=AB,菱形(四边相等的四边形是菱形),菱形的对边平行.【解析】由菱形的判定及其性质求解可得.【详解】证明:连接CD.∵AD=CD=BC=AB,∴四边形ABCD是菱形(四条边都相等的四边形是菱形).∴AD∥l(菱形的对边平行)【点睛】此题考查菱形的判定,掌握判定定理是解题关键.24、(1)画图见解析;(2);(3).【解析】试题分析:(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA,再根据AB所扫过的面积=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OB求解,再求出BO扫过的面积=S扇形B1OB,然后计算即可得解.试题解析:(1)△A1OB1如图所示;(2)由勾股定理得,BO=,所以,点B所经过的路径长=(3)由勾股定理得,OA=,∵AB所扫过的面积=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OBBO扫过的面积=S扇形B1OB,∴线段AB、BO扫过的图形的面积之和=S扇形A1OA-S扇形B1OB+S扇形B1OB,=S扇形A1OA,=考点:1.作图-旋转变换;2.勾股定理;3.弧长的计算;4.扇形面积的计算.25、(1),,;(2)点的坐标为;(3)【分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设点,用三角形的面积公式得到求解即可得出结论;(3)设出点M坐标,表示出MA2=(m-1)2+9,AB2=32,根据等腰三角形的性质建立方程求解即可得出结论.【详解】解:(1)∵直线与反比例函数的图象交与,两点∴,.∴,.∴,.∵点在反比例函数上,∴.∴反比例函数的函数表达式为.(2)设点,∵,∴.∴.∵,∴.∴,∵∴.解得:,∴.∴点的坐标为.(3)设出点M坐标为(m,0),∴MA2=(m-1)2+9,AB2=(1+3)2+(3+1)2=32,∵是以为顶角的等腰三角形∴AM=AB,故(m-1)2+9=32解得m=或m=(舍去)∴【点睛】此题主要考查反比例函数与一次函数综合,解题的关键是熟知待定系数法求解析式、三角形的面积公式及等腰三角形的性质.26、(1)y=2x2﹣8x+6;(2)不存在一点P,使△ABC的面积等于14;(3)点P的坐标为(3,5)或(,).【分析】(1)由B(4,m)在直线y=x+2上,可求得m的值,已知抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过待定系数法即可求得解析式;(2)设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC的长度与P点横坐标的函数关系式,根据三角形面积公式列出方程,即可解答;(3)根据△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026浙江杭州市广播电视监测中心招聘编外工作人员1人备考题库及一套答案详解
- 2026新疆昆东经济技术开发区管委会招聘19人备考题库及1套完整答案详解
- 2025年安徽城市管理职业学院引进高层次人才10名备考题库及完整答案详解
- 2026中国21世纪议程管理中心面向社会招聘2人备考题库带答案详解
- 企业内部供应链管理与物流管理手册(标准版)
- 2025安徽芜湖医药健康职业学院招聘11人备考题库及一套参考答案详解
- 未来五年城市家庭住宿行业市场营销创新战略制定与实施分析研究报告
- 未来五年城市轨道交通工程建筑行业市场营销创新战略制定与实施分析研究报告
- 未来五年月桂叶企业ESG实践与创新战略分析研究报告
- 未来五年运动员经纪人服务企业数字化转型与智慧升级战略分析研究报告
- T-CSER-015-2023 场地环境信息地球物理探测技术指南
- 2025至2030中国背板连接器行业发展趋势分析与未来投资战略咨询研究报告
- T/CCMA 0173-2023流动式起重机用高性能平衡阀
- GB/T 18910.103-2025液晶显示器件第10-3部分:环境、耐久性和机械试验方法玻璃强度和可靠性
- 梦虽遥追则能达愿虽艰持则可圆模板
- 励志类的美文欣赏范文(4篇)
- 浙江省绍兴市上虞区2024-2025学年七年级上学期期末语文试题(解析版)
- 广东省广州市白云区2024-2025学年六年级(上)期末语文试卷(有答案)
- GB/T 45166-2024无损检测红外热成像检测总则
- 山东省菏泽市东明县2024-2025学年七年级上学期考试生物试题
- 二零二四年医院停车场建设及运营管理合同
评论
0/150
提交评论