




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,是坐标原点,菱形顶点的坐标为,顶点在轴的负半轴上,反比例函数的图象经过顶点,则的值为()A. B. C. D.2.图中几何体的俯视图是()A. B. C. D.3.如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A. B. C. D.4.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于()A.5 B. C.2 D.5.在中,,若,则的值为()A. B. C. D.6.将抛物线先向左平移2个单位,再向下平移3个单位,得到的新抛物线的表达式为()A. B.C. D.7.如图,已知ΔABC~ΔADB,点D是AC的中点,AC=4,则AB的长为()A.2 B.4 C.22 D.8.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④c=﹣3a,其中正确的命题是()A.①② B.②③ C.①③ D.①③④9.下列说法正确的是()A.不可能事件发生的概率为;B.随机事件发生的概率为C.概率很小的事件不可能发生;D.投掷一枚质地均匀的硬币次,正面朝上的次数一定是次10.若,则()A. B. C.1 D.11.若关于的方程的一个根是,则的值是()A. B. C. D.12.如图所示的几何体是由4个大小相同的小立方块搭成,它的俯视图是()A. B. C. D.二、填空题(每题4分,共24分)13.一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:__________.14.一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率.若设平均每次降价的百分率为x,则可列方程_________.15.抛物线y=4x2﹣3x与y轴的交点坐标是_____.16.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为_______.17.如图,在中,,,,点是上的任意一点,作于点,于点,连结,则的最小值为________.18.如图,是的中线,点是线段上的一点,且,交于点.若,则_________.三、解答题(共78分)19.(8分)关于的方程有实根.(1)求的取值范围;(2)设方程的两实根分别为且,求的值.20.(8分)如图,直线y=﹣x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.21.(8分)在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为,记旋转角为.(1)如图①,当时,求点的坐标;(2)如图②,当点落在的延长线上时,求点的坐标;(3)当点落在线段上时,求点的坐标(直接写出结果即可).22.(10分)如图,在直角坐标系中,为坐标原点.已知反比例函数的图象经过点,过点作轴于点,的面积为.(1)求和的值;(2)若点在反比例函数的图象上运动,观察图象,当点的纵坐标是,则对应的的取值范围是.23.(10分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.24.(10分)港珠澳大桥是世界上最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A距离海平面的高度,先测出斜拉索底端C到桥塔的距离(CD的长)约为100米,又在C点测得A点的仰角为30°,测得B点的俯角为20°,求斜拉索顶端A点到海平面B点的距离(AB的长).(已知≈1.732,tan20°≈0.36,结果精确到0.1)25.(12分)树AB和木杆CD在同一时刻的投影如图所示,木杆CD高2m,影子DE长3m;若树的影子BE长7m,则树AB高多少m?26.如图,点,在反比例函数的图象上,作轴于点.⑴求反比例函数的表达式;⑵若的面积为,求点的坐标.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【详解】∵,
∴,∵四边形OABC是菱形,
∴AO=CB=OC=AB=5,
则点B的横坐标为,
故B的坐标为:,
将点B的坐标代入得,,
解得:.
故选:C.【点睛】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.2、D【解析】本题考查了三视图的知识找到从上面看所得到的图形即可.从上面看可得到三个矩形左右排在一起,中间的较大,故选D.3、D【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】过点A向BC作AH⊥BC于点H,所以根据相似比可知:,即EF=2(6-x)所以y=×2(6-x)x=-x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选D.【点睛】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.4、C【解析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC的中位线,由三角形的中位线定理即可得出结论.【详解】解:∵OM⊥AB,ON⊥AC,垂足分别为M、N,∴M、N分别是AB与AC的中点,∴MN是△ABC的中位线,∴BC=2MN=2,故选:C.【点睛】本题考查垂径定理、三角形中位线定理;熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.5、C【分析】根据特殊角的三角函数值求出∠B,再求∠A,即可求解.【详解】在中,,若,则∠B=30°故∠A=60°,所以sinA=故选:C【点睛】本题考查的是三角函数,掌握特殊角的三角函数值是关键.6、D【分析】根据抛物线的平移规律:左加右减,上加下减,即可得解.【详解】由题意,得平移后的抛物线为故选:D.【点睛】此题主要考查抛物线的平移规律,熟练掌握,即可解题.7、C【分析】根据相似三角形的性质列出比例式求解即可.【详解】解:∵点D是AC的中点,AC=4,,
∴AD=2,
∵ΔABC~ΔADB,
∴AD∴2∴AB=22,
故选C【点睛】本题考查了相似三角形的性质,能够根据相似三角形列出比例式是解答本题的关键,难度不大.8、D【分析】①观察图象可得,当x=1时,y=0,即a+b+c=0;②对称轴x=﹣1,即﹣=﹣1,b=2a;③抛物线与x轴的一个交点为(1,0),对称轴为x=﹣1,即可得ax2+bx+c=0的两根分别为﹣3和1;④当x=1时,y=0,即a+b+c=0,对称轴x=﹣1,即﹣=﹣1,b=2a,即可得c=﹣3a.【详解】解:观察图象可知:①当x=1时,y=0,即a+b+c=0,∴①正确;②对称轴x=﹣1,即﹣=﹣1,b=2a,∴②错误;③∵抛物线与x轴的一个交点为(1,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0)∴ax2+bx+c=0的两根分别为﹣3和1,∴③正确;④∵当x=1时,y=0,即a+b+c=0,对称轴x=﹣1,即﹣=﹣1,b=2a,∴c=﹣3a,∴④正确.所以正确的命题是①③④.故选:D.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.9、A【分析】由题意根据不可能事件是指在任何条件下不会发生,随机事件就是可能发生,也可能不发生的事件,发生的机会大于0并且小于1,进行判断.【详解】解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选:A.【点睛】本题考查不可能事件、随机事件的概念.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、D【分析】令=k,则x=2k,y=3k,z=4k,再代入分式进行计算即可.【详解】解:令=k,则x=2k,y=3k,z=4k,
∴.故选:D.【点睛】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.11、A【分析】把代入方程,即可求出的值.【详解】解:∵方程的一个根是,∴,∴,故选:A.【点睛】本题考查了一元二次方程的解,以及解一元一次方程,解题的关键是熟练掌握解方程的步骤.12、C【解析】从上面可得:第一列有两个方形,第二列只有一个方形,只有C符合.
故选C二、填空题(每题4分,共24分)13、【解析】根据向上一面可能出现的有6种情况,其中出现数字为奇数的有3种情况,利用概率公式进行计算即可得.【详解】掷一次正六面体骰子向上一面的数字有1、2、3、4、5、6共6种可能,其中奇数有1,3,5共3个,∴掷一次朝上一面的数字是奇数的概率是=,故答案为:.【点睛】本题考查了概率的计算,用到的知识点为:概率=所求情况数与总情况数之比.14、【分析】设平均每次降价的百分率为x,根据“一件商品的标价为108元,经过两次降价后的销售价是72元”即可列出方程.【详解】解:设平均每次降价的百分率为x,根据题意可得:,故答案为:.【点睛】本题考查一元二次方程的实际应用,理解题意,找出等量关系是解题的关键.15、(0,0)【解析】根据y轴上的点的特点:横坐标为0.可代入求得y=0,因此可得抛物线y=4x2-3x与y轴的交点坐标是(0,0).故答案为(0,0).16、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①当3是直角边时,∵△ABC最小的角为A,∴tanA=;②当3是斜边时,根据勾股定理,∠A的邻边=,∴tanA=;所以tanA的值为或.17、【分析】连接,根据矩形的性质可知:,当最小时,则最小,根据垂线段最短可知当时,则最小,再根据三角形的面积为定值即可求出的长.【详解】中,,,,,连接,于点,于点,四边形是矩形,,当最小时,则最小,根据垂线段最短可知当时,则最小,.故答案为:.【点睛】本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求的最小值转化为其相等线段的最小值.18、【分析】过点A作AG∥BC交CF的延长线于G,根据平行即可证出△AGE∽△DCE,△AGF∽△BCF,列出比例式,根据已知条件即可求出AB.【详解】解:过点A作AG∥BC交CF的延长线于G,如下图所示∴△AGE∽△DCE,△AGF∽△BCF∴,∵∴∴∵是的中线,∴∴∴解得:cm∴AB=AF+BF=1cm故答案为:1.【点睛】此题考查的是相似三角形的判定及性质,掌握构造相似三角形的方法是解决此题的关键.三、解答题(共78分)19、(1)m≤1;(2)m=.【分析】(1)根据一元二次方程方程有实根的条件是列出不等式求解即可;(2)根据根与系数的关系可得,再根据,求出的值,最后求出m的值即可.【详解】解:根据题意得(2)由根与系数的关系可得【点睛】本题考查了一元二次方程有根的条件及根与系数的关系,根据题意列出等式或不等式是解题的关键.20、(1)y=x2+2x+1;(2)5;(3)M(,﹣)或(﹣,)【分析】(1)先求出点B坐标,再将点D,B代入抛物线的顶点式即可;(2)如图1,过点C作CH⊥y轴于点H,先求出点F的坐标,点C的坐标,再求出直线CM的解析式,最后可求出两个交点及交点间的距离;(3)设M(m,﹣m+1),如图2,取PQ的中点N,连接MN,证点P,M,Q同在以PQ为直径的圆上,所以∠PMQ=90°,利用勾股定理即可求出点M的坐标.【详解】解:(1)在y=﹣x+1中,当x=0时,y=1,∴B(0,1),∵抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1),∴可设抛物线解析式为y=a(x+2)2﹣1,将点B(0,1)代入,得,a=,∴抛物线的解析式为:y=(x+2)2﹣1=x2+2x+1;(2)联立,解得,或,∴F(﹣5,),∵点C是BF的中点,∴xC==﹣,yC==,∴C(﹣,),如图1,过点C作CH⊥y轴于点H,则∠HCB+∠CBH=90°,又∵∠MCH+∠HCB=90°,∴∠CBH=∠MCH,又∠CHB=∠MHC=90°,∴△CHB∽△MHC,∴=,即=,解得,HM=5,∴OM=OH+MH=+5=,∴M(0,),设直线CM的解析式为y=kx+,将C(﹣,)代入,得,k=2,∴yCM=2x+,联立2x+=x2+2x+1,解得,x1=,x2=﹣,∴P(,5+),Q(﹣,﹣5+),∴PQ==5;(3)∵点M在直线AB上,∴设M(m,﹣m+1),如图2,取PQ的中点N,连接MN,∵PQ=2MN,∴NM=NP=NQ,∴点P,M,Q同在以PQ为直径的圆上,∴∠PMQ=90°,∴MP2+MQ2=PQ2,∴+=(5)2,解得,m1=,m2=﹣,∴M(,﹣)或(﹣,).【点睛】本题考查了待定系数法求解析式,两点间的距离,勾股定理等,解题关键是需要有较强的计算能力.21、(1)点的坐标为;(2)点的坐标为;(3)点的坐标为.【分析】(1)过点作轴于根据已知条件可得出AD=6,再直角三角形ADG中可求出DG,AG的长,即可确定点D的坐标.(2)过点作轴于于可得出,根据勾股定理得出AE的长为10,再利用面积公式求出DH,从而求出OG,DG的长,得出答案(3)连接,作轴于G,由旋转性质得到,从而可证,继而可得出结论.【详解】解:(1)过点作轴于,如图①所示:点,点.,以点为中心,顺时针旋转矩形,得到矩形,,在中,,,点的坐标为;(2)过点作轴于于,如图②所示:则,,,,,,,点的坐标为;(3)连接,作轴于G,如图③所示:由旋转的性质得:,,,,,,在和中,,,,,点的坐标为.【点睛】本题考查的知识点是坐标系内矩形的旋转问题,用到的知识点有勾股定理,全等三角形的判定与性质等,做此类题目时往往需要利用数形结合的方法来求解,根据每一个问题做出不同的辅助线是解题的关键.22、(1),;(2)【分析】(1)利用三角形的面积可求出m的值,得出点A的坐标,再代入反比例函数即可得出K的值;(2)利用(1)中得出的反比例函数的解析式求出当y=0时x的值,再根据反比例函数图象的增减性求解即可.【详解】解:(1)∵,∴,.∴,∴,∴点的坐标为代入,得;(2)由(1)得,反比例函数的解析式为:∵当时,∵当时,y随x的增大而减小∴的取值范围是.【点睛】本题考查的知识点是求反比例函数解析式以及反比例函数的性质,掌握以上知识点是解此题的关键.23、(1)1:3;(1)见解析;(3)5:3:1.【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【详解】(1)∵四边形ABCD是平行四边形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职业生涯规划与创新创业就业指导练习试题及答案
- 系统集成项目的效率评估方法试题及答案
- 2025个人借款合同标准范本
- 2025年造纸完成工段智能装备项目申请报告模板
- 重点解析初级社会工作者的试题及答案
- 专业发展与职业生涯规划试题及答案
- 特种设备a3试题及答案
- 社工中级考试的准备与策略
- 2025年高阻隔性封装材料项目申请报告
- 腹泻防治试题及答案
- 13J104蒸压加气混凝土砌块板材构造
- DL∕T 5362-2018 水工沥青混凝土试验规程
- 超星尔雅学习通《基因与人》章节测试答案
- 地上附着物清场合同范本
- 化工设计智慧树知到期末考试答案章节答案2024年浙江大学
- 国开机考答案-工程数学(本)(闭卷)
- 《新编中国秘书史》课后习题及答案
- 初中语文++病句专题++课件+八年级统编版语文下册
- 2024年全国新高考1卷(新课标Ⅰ)数学试卷(含答案详解)
- 宠物用药市场细分与竞争分析
- DZ∕T 0248-2014 岩石地球化学测量技术规程(正式版)
评论
0/150
提交评论