




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.模型结论:如图①,正内接于,点是劣弧上一点,可推出结论.应用迁移:如图②,在中,,,,是内一点,则点到三个顶点的距离和的最小值为()A. B.5 C. D.2.如图,小江同学把三角尺含有角的一端以不同的方向穿入进另一把三角尺(含有角)的孔洞中,已知孔洞的最长边为,则三角尺穿过孔洞部分的最大面积为()A. B. C. D.3.若关于的方程的解为,,则方程的解为()A. B. C. D.4.若点关于原点对称点的坐标是,则的值为()A. B. C. D.5.一个学习兴趣小组有2名女生,3名男生,现要从这5名学生中任选出一人担当组长,则女生当组长的概率是()A. B. C. D.6.已知,是圆的半径,点,在圆上,且,若,则的度数为()A. B. C. D.7.关于x的一元二次方程有两个实数根,则k的取值范围在数轴上可以表示为()A. B.C. D.8.如图,在中,,则的值为()A. B. C. D.9.下列方程中没有实数根的是()A. B.C. D.10.如图,已知一组平行线,被直线、所截,交点分别为、、和、、,且,,,则()A.4.4 B.4 C.3.4 D.2.4二、填空题(每小题3分,共24分)11.已知抛物线,当时,的取值范围是______________12.如图,在中,,于点,,,则_________;13.计算:__________.14.反比例函数和在第一象限的图象如图所示,点A在函数图像上,点B在函数图像上,AB∥y轴,点C是y轴上的一个动点,则△ABC的面积为_____.15.二次函数(其中m>0),下列命题:①该图象过点(6,0);②该二次函数顶点在第三象限;③当x>3时,y随x的增大而增大;④若当x<n时,都有y随x的增大而减小,则.正确的序号是____________.16.若线段AB=10cm,点C是线段AB的黄金分割点,则AC的长为_____cm.(结果保留根号)17.如图,在△ABC中,∠C=90°,∠A=α,AC=20,请用含α的式子表示BC的长___________.18.在实数范围内分解因式:-1+9a4=____________________。三、解答题(共66分)19.(10分)某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200立方米的生活垃圾运走.(1)假如每天能运x立方米,所需时间为y天,写出y与x之间的函数解析式(不要求写出自变量的取值范围);(2)若每辆拖拉机一天能运12立方米,则5辆这样的拖拉机要用多少天才能运完?20.(6分)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)写出点B的坐标;(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如果点P从点A出发,以2cm/秒的速度沿AB向点B运动,同时点Q从点D出发,以1cm/秒的速度沿DA向点A运动.当一个点停止运动时,另一个点也随之停止运动.设运动时间为t.问是否存在这样的t使得△APQ与△ADB相似?如存在,请求出t的值;如不存在,请说明理由.21.(6分)如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.22.(8分)如图,在O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数.(2)若弦BC=8cm,求图中劣弧BC的长.23.(8分)如图,在中,,动点从点出发,沿以每秒个单位长度的速度向终点运动.过点作于点(点不与点重合),作,边交射线于点.设点的运动时间为秒.(1)用含的代数式表示线段的长.(2)当点与点重合时,求的值.(3)设与重叠部分图形的面积为,求与之间的函数关系式.24.(8分)用列代数式或列方程(组)的方法,解决网络上流行的一个问题:法国新总统比法国第一夫人小24岁,美国新总统比美国第一夫人大24岁,法国新总统比美国新总统小32岁.求:美国第一夫人比法国第一夫人小多少岁?25.(10分)如图,已知△ABC的顶点A、B、C的坐标分别是A(﹣1,﹣1)、B(﹣4,﹣3)、C(﹣4,﹣1).(1)画出△ABC关于原点O中心对称的图形△A1B1C1;(2)将△ABC绕点A按顺时针方向旋转90°后得到△AB2C2,画出△AB2C2并求线段AB扫过的面积.26.(10分)如图,已知BCAC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且ADAOAMAP,连接OP.(1)证明:MD//OP;(2)求证:PD是⊙O的切线;(3)若AD24,AMMC,求的值.
参考答案一、选择题(每小题3分,共30分)1、D【分析】在△DEG右侧作等边三角形DGM,连接FM,由模型可知DF+FG=FM,∴DF+EF+FG的最小值即为线段EM,根据题意求出EM即可.【详解】解:在△DEG右侧作等边三角形DGM,过M作ED的垂线交ED延长线于H,连接FM,EM,由模型可知DF+FG=FM,∴DF+EF+FG的最小值即为EF+FM的最小值,即线段EM,由已知易得∠MDH=30°,DM=DG=,∴在直角△DMH中,MH=DM=,DH=,∴EH=3+3=6,在直角△MHE中,【点睛】本题主要考查了学生的知识迁移能力,熟练掌握等边三角形的性质和勾股定理是解题的关键.2、B【分析】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,故可求解.【详解】根据题意可知当穿过孔洞三角尺为等边三角形时,面积最大,∵孔洞的最长边为∴S==故选B.【点睛】此题主要考查等边三角形的面积求解,解题的关键是根据题意得到当穿过孔洞三角尺为等边三角形时面积最大.3、C【分析】设方程中,,根据已知方程的解,即可求出关于t的方程的解,然后根据即可求出结论.【详解】解:设方程中,则方程变为∵关于的方程的解为,,∴关于的方程的解为,,∴对于方程,或3解得:,,故选C.【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.4、A【分析】根据平面内关于原点对称的点,横坐标与纵坐标都互为相反数得出关于,的方程组,解之即可.【详解】解:点,关于原点对称,,解得:.故选:A.【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.5、C【分析】直接利用概率公式求解即可求得答案.【详解】∵一个学习兴趣小组有2名女生,3名男生,∴女生当组长的概率是:.故选:C.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.6、D【分析】连接OC,根据圆周角定理求出∠AOC,再根据平行得到∠OCB,利用圆内等腰三角形即可求解.【详解】连接CO,∵∴∠AOC=2∵∴∠OCB=∠AOC=∵OC=BO,∴=∠OCB=故选D.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.7、B【分析】利用根的判别式和题意得到,求出不等式的解集,最后在数轴上表示出来,即可得出选项.【详解】解:∵关于x的方程有两个实数根,∴,解得:,在数轴上表示为:,故选:B.【点睛】本题考查了在数轴上表示不等式的解集,根的判别式的应用,注意:一元二次方程(为常数)的根的判别式为.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.特别注意:当时,方程有两个实数根,本题主要应用此知识点来解决.8、D【解析】过点A作,垂足为D,在中可求出AD,CD的长,在中,利用勾股定理可求出AB的长,再利用正弦的定义可求出的值.【详解】解:过点A作,垂足为D,如图所示.在中,,;在中,,,.故选:D.【点睛】考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB的长是解题的关键.9、D【分析】分别计算出判别式△=b2−4ac的值,然后根据判别式的意义分别判断即可.【详解】解:A、△==5>0,方程有两个不相等的实数根;B、△=32−4×1×2=1>0,方程有两个不相等的实数根;C、△=112−4×2019×(−20)=161641>0,方程有两个不相等的实数根;D、△=12−4×1×2=−7<0,方程没有实数根.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac的意义,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10、D【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵∴即解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.二、填空题(每小题3分,共24分)11、1≤y<9【分析】根据二次函数的图象和性质求出抛物线在上的最大值和最小值即可.【详解】∴抛物线开口向上∴当时,y有最小值,最小值为1当时,y有最大值,最小值为∴当时,的取值范围是故答案为:.【点睛】本题主要考查二次函数在一定范围内的最大值和最小值,掌握二次函数的图象和性质是解题的关键.12、【分析】根据相似三角形的判定得到△ABC∽△CBD,从而可根据其相似比求得AC的长.【详解】∵,,,∴∠BDC=∠BCA=90°,∠CBD+∠ABC=90°,BC=3,∴△ABC∽△CBD,
∴AC:CD=CB:BD,即AC:=3:2,∴AC=.
故答案为:.【点睛】本题考查相似三角形的判定和性质、勾股定理.13、【分析】本题涉及零指数幂、负整数指数幂、二次根式化简三个考点,在计算时需要针对每个考点分别进行计算,然后再进行加减运算即可.【详解】3-4-1=-2.故答案为:-2.【点睛】本题考查的是实数的运算能力,注意要正确掌握运算顺序及运算法则.14、1【分析】设A(m,),B(m,),则AB=-,△ABC的高为m,根据三角形面积公式计算即可得答案.【详解】∵A、B分别为、图象上的点,AB∥y轴,∴设A(m,),B(m,),∴S△ABC=(-)m=1.故答案为:1【点睛】本题考查反比例函数图象上点的坐标特征,熟知反比例函数图象上点的坐标都满足反比例函数的解析式是解题关键.15、①④【分析】先将函数解析式化成交点时后,可得对称轴表达式,及与x轴交点坐标,由此可以判断增减性.【详解】解:,对称轴为,①,故该函数图象经过,故正确;②,,该函数图象顶点不可能在第三象限,故错误;③,则当时,y随着x的增大而增大,故此项错误;④当时,即,y随着x的增大而减小,故此项正确.【点睛】本题考查了二次函数的性质,掌握二次函数的性质是解题的关键.16、或【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有AC=AB=×10=,当AC<BC时,则有BC=AB=×10=,∴AC=AB-BC=10-()=,∴AC长为cm或cm.故答案为:或【点睛】本题考查了黄金分割点的概念.注意这里的AC可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.17、【分析】在直角三角形中,角的正切值等于其对边与邻边的比值,据此求解即可.【详解】在Rt△ABC中,∵∠A=α,AC=20,∴=,即BC=.故答案为:.【点睛】本题主要考查了三角函数解直角三角形,熟练掌握相关概念是解题关键.18、【分析】连续利用2次平方差公式分解即可.【详解】解:.【点睛】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的基础,注意检查分解要彻底.三、解答题(共66分)19、(1)y=;(2)5辆这样的拖拉机要用20天才能运完【分析】(1)根据等量关系列式即可;(2)先求出一天运的数量,然后代入解析式即可.【详解】解:(1)∵xy=1200,∴y=;(2)x=12×5=60,将x=60代入y=,得y==20,答:5辆这样的拖拉机要用20天才能运完.【点睛】本题考查了反比例函数的实际应用,找出等量关系列出关系式是解题关键.20、(1)点B的坐标为(1,3);(2)点D的坐标为(,0);(3)存在,当t=s或s时,△APQ与△ADB相似.【分析】(1)根据正切的定义求出BC,得到点B的坐标;(2)根据△ABC∽△ADB,得到=,代入计算求出AD,得到点D的坐标;(3)分△APQ∽△ABD、△AQP∽△ABD两种情况,根据相似三角形的性质列式计算即可.【详解】解:(1)∵A(﹣3,0),C(1,0),∴AC=4,∵∠ACB=90°,tan∠BAC=,∴=,即=,解得,BC=3,∴点B的坐标为(1,3);(2)如图1,作BD⊥BA交x轴于点D,则∠ACB=∠ABD=90°,又∠A=∠A,∴△ABC∽△ADB,∴=,在Rt△ABC中,AB===5,∴=,解得,AD=,则OD=AD﹣AO=,∴点D的坐标为(,0);(3)存在,由题意得,AP=2t,AQ=﹣t,当PQ⊥AB时,PQ∥BD,∴△APQ∽△ABD,∴=,即=,解得,t=,当PQ⊥AD时,∠AQP=∠ABD,∠A=∠A,∴△AQP∽△ABD,∴=,即=,解得,t=,综上所述,当t=s或s时,△APQ与△ADB相似.【点睛】本题考查的是相似三角形的判定和性质、坐标与图形性质,掌握相似三角形的判定定理和性质定理是解题的关键.21、(1)CB=2,AP=2;(2)证明见解析;(3)DE=.【分析】(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt△BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得,再利用比例性质可计算出DE=.【详解】解:(1)∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)∵AP=BP,∴OP为△ABC的中位线,∴OP=BC=1,∴,而,∴,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴,即,∴DE=.22、(1)60°;(2)【分析】(1)先根据垂径定理得出BE=CE,,再根据圆周角定理即可得出∠AOC的度数;(2)连接OB,先根据勾股定理得出OE的长,由弦BC=8cm,可得半径的长,继而求劣弧的长;【详解】解:(1)连接OB,∵BC⊥OA,∴BE=CE,,又∵∠ADB=30°,∴∠AOC=∠AOB=2∠ADB,∴∠AOC=60°;(2)连接OB得,∠BOC=2∠AOC=120°,∵弦BC=8cm,OA⊥BC,∴CE=4cm,∴OC=cm,∴劣弧的长为:【点睛】本题主要考查了勾股定理,垂径定理,圆周角定理,掌握勾股定理,垂径定理,圆周角定理是解题的关键.23、(1);(2)t=1;(3).【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论.【详解】解:在中,.,在中,,.在中,,.点和点重合,,;当时,;当时,如图2,,在中,,,【点睛】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,正确作出图形是解本题的关键.24、美国第一夫人比法国第一夫人小16岁.【分析】将法国新
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年贴片陶瓷电容项目市场调查研究报告
- 2025年牛仔A字裙项目市场调查研究报告
- 2025年凝露监控器项目市场调查研究报告
- 强弱关系视角下大学初毕业群体社会资本传播与个体资本增量研究
- 尿激酶灌注对无心跳供肝肝内缺血型胆道病变的预防作用:临床与实验双维度探究
- 小学拉丁操:创编逻辑应用实践与育人价值探究
- 基于大数据的心血管用药安全与效率分析系统研究
- 2025年初中地理学业水平考试模拟卷:人文地理专项练习题及答案
- 医疗健康领域中的高效办公模式-俯卧位工作法探讨
- 员工情绪管理的重要性计划
- 2025年软件设计师考试模拟题大全试题及答案
- 和二手车合作协议书
- 商会授权运营协议书
- 石膏砂浆抹灰施工工艺流程及操作要点
- 学习公共关系2025年重要试题及答案
- 2025高考北京卷作文命题趋势分析及范文
- 2025-2030年中国电子材料行业市场现状供需分析及投资评估规划分析研究报告
- 运维自动化流程设计-全面剖析
- 人工智能AI创业计划书
- 二级注册计量师题库附答案2025
- 南科大的机试题及答案
评论
0/150
提交评论