2022-2023学年江苏省海安数学八年级第一学期期末监测模拟试题含解析_第1页
2022-2023学年江苏省海安数学八年级第一学期期末监测模拟试题含解析_第2页
2022-2023学年江苏省海安数学八年级第一学期期末监测模拟试题含解析_第3页
2022-2023学年江苏省海安数学八年级第一学期期末监测模拟试题含解析_第4页
2022-2023学年江苏省海安数学八年级第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为()A.北偏西 B.南偏西75°C.南偏东或北偏西 D.南偏西或北偏东2.从边长为的正方形内去掉-一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是()A. B.C. D.3.一个多边形内角和是,则这个多边形的边数为()A. B. C. D.4.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为()A.1.6×10﹣9米 B.1.6×10﹣7米 C.1.6×10﹣8米 D.16×10﹣7米6.如图,在平面直角坐标系中有一个3×3的正方形网格,其右下角格点(小正方形的顶点)A的坐标为(﹣1,1),左上角格点B的坐标为(﹣4,4),若分布在过定点(﹣1,0)的直线y=﹣k(x+1)两侧的格点数相同,则k的取值可以是()A. B. C.2 D.7.已知三角形的两边长分别为3cm和8cm,则这个三角形的第三边的长可能是(

)A.4cm

B.5cm

C.6cm

D.13cm8.若分式的值为0,则x的值应为()A. B. C. D.9.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是().A.带其中的任意两块去都可以 B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了 D.带1、4或2、4或3、4去均可10.如果分式的值为0,则x的值是A.1 B.0 C.-1 D.±1二、填空题(每小题3分,共24分)11.如图,将沿着对折,点落到处,若,则__________.12.若是一个完全平方式,则k=___________.13.已知4y2+my+1是完全平方式,则常数m的值是______.14.如图,在等腰三角形中,,为边上中点,过点作,交于,交于,若,则的长为_________.15.繁昌到南京大约150千米,由于开通了高铁,动车的的平均速度是汽车的2.5倍,这样乘动车到南京比坐汽车就要节省1.2小时,设汽车的平均速度为x千米/时,根据题意列出方程_____.16.已知a,b满足方程组,则a—2b的值为__________.17.若是完全平方公式,则__________.18.已知点P(a,b)在一次函数y=2x﹣1的图象上,则4a﹣2b+1=_____.三、解答题(共66分)19.(10分)如图,在等边△ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF、EF的长.20.(6分)(1)分解因式:(x﹣2)2﹣2x+4(2)解方程:.21.(6分)解方程:22.(8分)一列火车从车站开出,预计行程450千米.当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.23.(8分)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C、D,且点D的坐标为(1,n),(1)则n=,k=,b=;(2)函数y=kx+b的函数值大于函数y=x+1的函数值,则x的取值范围是;(3)求四边形AOCD的面积;(4)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形?若存在求出点P的坐标;若不存在,请说明理由.24.(8分)(1)求式中x的值:;(2)计算:25.(10分)某工厂需要在规定时间内生产1000个某种零件,该工厂按一定速度加工6天后,发现按此速度加工下去会延期4天完工,于是又抽调了一批工人投入这种零件的生产,使工作效率提高了,结果如期完成生产任务.(1)求该工厂前6天每天生产多少个这种零件;(2)求规定时间是多少天.26.(10分)如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC的周长和面积.

参考答案一、选择题(每小题3分,共30分)1、C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C.【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.2、B【分析】分别求出从边长为a的正方形内去掉一个边长为b的小正方形后剩余部分的面积和拼成的矩形的面积,根据面积相等即可得出算式,即可选出选项.【详解】解:∵从边长为a的正方形内去掉一个边长为b的小正方形,剩余部分的面积是:,拼成的矩形的面积是:,∴根据剩余部分的面积相等得:,故选:B.3、C【分析】n边形的内角和为(n−2)180,由此列方程求n的值.【详解】设这个多边形的边数是n,则:(n−2)×180=720,解得n=6,故选:C.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4、D【解析】分析:直接利用第二象限横纵坐标的关系得出a,b的符号,进而得出答案.详解:∵点A(a+1,b-2)在第二象限,∴a+1<0,b-2>0,解得:a<-1,b>2,则-a>1,1-b<-1,故点B(-a,1-b)在第四象限.故选D.点睛:此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.5、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵1纳米=10﹣9米,∴16纳米表示为:16×10﹣9米=1.6×10﹣8米.故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、B【分析】由直线解析式可知:该直线过定点(﹣1,0),画出图形,由图可知:在直线CD和直线CE之间,两侧格点相同,再根据E、D两点坐标求k的取值【详解】解:∵直线y=﹣k(x+1)过定点(﹣1,0),分布在直线y=﹣k(x+1)两侧的格点数相同,由正方形的对称性可知,直线y=﹣k(x+1)两侧的格点数相同,∴在直线CD和直线CE之间,两侧格点相同,(如图)∵E(﹣3,3),D(﹣3,4),∴﹣1<﹣k<﹣,则<k<1.故选B.【点睛】此题考查的是一次函数与图形问题,根据一次函数的图像与点的坐标的位置关系求k的取值是解决此题的关键.7、C【详解】根据三角形两边之和大于第三边,两边之差小于第三边,可知第三边应大于5且小于11,故选C8、A【解析】根据分式的值为零的条件可以求出x的值.【详解】由分式的值为零的条件得x﹣1=2,且x﹣3≠2,解得:x=1.故选A.【点睛】本题考查了分式值为2的条件,具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.9、D【解析】试题分析:②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.点评:本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.10、A【解析】试题分析:根据分式分子为0分母不为0的条件,要使分式的值为0,则必须.故选A.二、填空题(每小题3分,共24分)11、【解析】根据折叠的性质得到∠A′DE=∠ADE,∠A′ED=∠AED,由平角的定义得到∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,根据已知条件得到∠ADE+∠AED=145°,由三角形的内角和即可得到结论.【详解】∵将△ABC沿着DE对折,A落到A′,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,∴∠BDA′+2∠ADE+∠A′EC+2∠AED=360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED=145°,∴∠A=35°.故答案为35°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.12、±1【分析】根据平方项可知是x和4的完全平方式,再根据完全平方公式的乘积二倍项列式求解即可.【详解】解:∵x2+kx+16是一个完全平方式,∴kx=±2×4•x,解得k=±1.故答案为:±1.【点睛】本题考查了完全平方公式,根据平方项确定出这两个数是求解的关键.13、1或-1【解析】∵1y2-my+1是完全平方式,∴-m=±1,即m=±1.故答案为1或-1.14、1【分析】连接BD,利用ASA证出△EDB≌△FDC,从而证出S△EDB=S△FDC,从而求出S△DBC,然后根据三角形的面积即可求出CD,从而求出AC,最后利用勾股定理即可求出结论.【详解】解:连接BD∵在等腰三角形中,,为边上中点,∴AB=BC,BD=CD=AD,∠BDC=90°,∠EBD=,∠C=45°∵∴∠EDF=∠BDC=90°,∠EBD=∠C=45°∴∠EDB=∠FDC在△EDB和△FDC中∴△EDB≌△FDC∴S△EDB=S△FDC∴S△DBC=S△FDC+S△BDF=S△EDB+S△BDF=∴∴CD2=18∴CD=∴AC=2CD=∴AB2+BC2=AC2∴2AB2=()2故答案为:1.【点睛】此题考查的是全等三角形的判定及性质、等腰三角形的性质和勾股定理,掌握全等三角形的判定及性质、等腰三角形的性质和勾股定理是解决此题的关键.15、.【分析】设汽车的平均速度为x千米/时,则动车的平均速度为2.5x,根据题意可得:由乘动车到南京比坐汽车就要节省1.2小时,列方程即可.【详解】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,.故答案为:.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.16、【分析】先根据二元一次方程组解出,b的值,再代入求解即可.【详解】解得将代入a—2b中故答案为:.【点睛】本题考查了解二元一次方程组的问题,掌握解二元一次方程组的方法是解题的关键.17、【分析】根据乘积二倍项和已知平方项确定出这两个数为和,再利用完全平方式求解即可.【详解】解:,.故答案为:16.【点睛】本题主要了完全平方式,根据乘积二倍项确定出这两个数是求解的关键.18、1【分析】直接把点P(a,b)代入一次函数y=2x﹣1,可求b=2a﹣1,即可求4a﹣2b+1=1.【详解】解:∵点P(a,b)在一次函数y=2x﹣1的图象上,∴b=2a﹣1∴4a﹣2b+1=4a﹣2(2a﹣1)+1=1故答案为1【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.三、解答题(共66分)19、(1)∠F=30°;(2)DF=4,EF=2.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【详解】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4,∴EF=DE=2.【点睛】本题考查等边三角形的判定和性质,以及直角三角形的性质,解题的关键是熟记30度的角所对的直角边等于斜边的一半.20、(1)(x﹣2)(x﹣4);(2)原方程无解.【分析】(1)利用分组分解法,提取公因式即可得到答案,(2)把分式方程转化为整式方程,再检验即可得到答案.【详解】(1)原式=(x﹣2)2﹣2(x﹣2)=(x﹣2)(x﹣4)(2)解:方程两边都乘以得:解这个方程得当时,,∴不是原方程的解,∴原方程无解.【点睛】本题考查的是分组分解法分解因式,解分式方程,掌握以上知识是解题的关键.21、x=【分析】先两边同时乘以去分母,将分式方程转化为一元一次方程,求解并检验即可.【详解】解:去分母得,,去括号整理得,,即,解得,检验:当时,,∴原方程的解为.【点睛】本题考查解分式方程,掌握分式方程的求解方法是解题的关键,注意一定要验根.22、这列火车原来的速度为每小时2千米【分析】如果设这列火车原来的速度为每小时x千米,那么提速后的速度为每小时(x+0.2x)千米,根据等量关系:按原速度行驶所用时间-提速后时间=,列出方程,求解即可.【详解】设这列火车原来的速度为每小时x千米.由题意得:-=.整理得:12x=1.解得:x=2.经检验:x=2是原方程的解.答:这列火车原来的速度为每小时2千米.【点睛】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.如本题:车速提高了0.2倍,是一种隐含条件.23、(1)2,3,-1;(2);(3)(4)或【解析】试题分析:(1)对于直线,令求出的值,确定出A的坐标,把B坐标代入中求出b的值,再将D坐标代入求出n的值,进而将D坐标代入求出的值即可;由两个一次函数解析式,结合图象确定出的范围;过D作垂直于轴,四边形的面积等于梯形面积减去三角形面积,求出即可;在轴上存在点P,使得以点P、C、D为顶点的三角形是直角三角形,理由:分两种情况考虑:;‚,分别求出P点坐标即可.试题解析:(1)对于直线,令得到,即A(0,1),把B(0,-1)代入中,得:,把D(1,n)代入得:,即D(1,2),把D坐标代入中得:,即,故答案为2,3,-1;一次函数与交于点D(1,2),由图象得:函数的函数值大于函数的函数值时的取值范围是;故答案为;过D作垂直于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论