2022-2023学年江苏省南京市六合区部分学校数学八年级第一学期期末监测试题含解析_第1页
2022-2023学年江苏省南京市六合区部分学校数学八年级第一学期期末监测试题含解析_第2页
2022-2023学年江苏省南京市六合区部分学校数学八年级第一学期期末监测试题含解析_第3页
2022-2023学年江苏省南京市六合区部分学校数学八年级第一学期期末监测试题含解析_第4页
2022-2023学年江苏省南京市六合区部分学校数学八年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列各式中,正确的是()A.3>2 B.a3•a2=a6 C.(b+2a)(2a-b)=b2-4a2 D.5m+2m=7m22.如果分式方程无解,则的值为()A.-4 B. C.2 D.-23.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况4.如图,,,,下列条件中不能判断的是()A. B. C. D.5.如图,,,,,,点在线段上,,是等边三角形,连交于点,则的长为()A. B. C. D.6.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE,若∠A=30°,AB=AC,则∠BDE的度数为()A.45 B.52.5 C.67.5 D.757.如图,小明从地出发,沿直线前进15米后向左转18°,再沿直线前进15米,又向左转18°⋯⋯,照这样走下去,他第一次回到出发地地时,一共走的路程是()A.200米 B.250米 C.300米 D.350米8.如图,已知一次函数的图象经过A(0,1)和B(2,0),当x>0时,y的取值范围是()A.; B.; C.; D.9.下列运算正确的是()A. B. C. D.10.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A.互为相反数 B.互为倒数 C.相等 D.a比b大11.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是()A.40° B.80° C.90° D.140°12.下列命题是假命题的是().A.两直线平行,内错角相等 B.三角形内角和等于180°C.对顶角相等 D.相等的角是对顶角二、填空题(每题4分,共24分)13.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QPA全等,则AP=______.14.直线与平行,则的图象不经过____________象限.15.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.16.当_____时,分式有意义.17.一个多边形的每个外角都等于,则这个多边形的边数是___________18.若是完全平方公式,则__________.三、解答题(共78分)19.(8分)如示例图将4×4的棋盘沿格线划分成两个全等的图形,请再用另外3种方法将4×4的棋盘沿格线划分成两个全等图形(约定某两种划分法可经过旋转、轴对称得到的划分法为相同划分法).20.(8分)工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料(图中阴影部分)不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张?(2)一共能生产多少个巧克力包装盒?21.(8分)已知:关于的方程.当m为何值时,方程有两个实数根.22.(10分)如图1,在长方形中,,,点在线段上以的速度由向终点运动,同时,点在线段上由点向终点运动,它们运动的时间为.(解决问题)若点的运动速度与点的运动速度相等,当时,回答下面的问题:(1);(2)此时与是否全等,请说明理由;(3)求证:;(变式探究)若点的运动速度为,是否存在实数,使得与全等?若存在,请直接写出相应的的值;若不存在,请说明理由.23.(10分)在如图所示的直角坐标系中,(1)描出点、、,并用线段顺次连接点、、,得;(2)在直角坐标系内画出关于轴对称的;(3)分别写出点、点的坐标.24.(10分)如图在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.25.(12分)某高速公路有的路段需要维修,拟安排甲、乙两个工程队合作完成,规定工期不得超过一个月(30天),已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为公路的维修时,甲队比乙队少用6天(1)求甲乙两工程队每天能完成维修公路的长度分别是多少(2)若甲队的工程费用为每天2万元,乙队每天的工程费用为1.2万元,15天后乙队另有任务,余下工程由甲队完成,请你判断能否在规定的工期完成且总费用不超过80万元26.某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成统计图,试根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;(2)根据下表填空:a=,b=,c=;平均数(分)中位数(分)众数(分)一班ab90二班1.680c(3)请从平均数和中位数或众数中任选两个对这次竞赛成绩的结果进行分析.

参考答案一、选择题(每题4分,共48分)1、A【分析】比较两个二次根式的大小可判别A,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B、C、D的正误.【详解】A、,,∵,∴,故该选项正确;B、•,故该选项错误;C、,故该选项错误;D、,故该选项错误;故选:A.【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.2、A【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于1.【详解】去分母得x=8+a,当分母x-2=1时方程无解,解x-2=1得x=2时方程无解.则a的值是-2.故选A.【点睛】本题考查了分式方程无解的条件,是需要识记的内容.3、A【分析】读懂题意,从题意中得到必要的信息是解决问题的关键.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.因此,【详解】解:从图中可以看出各项消费金额占消费总金额的百分比.故选A.4、B【分析】先证明∠A=∠D,然后根据全等三角形的判定方法逐项分析即可.【详解】解:如图,延长BA交EF与H.∵AB∥DE,∴∠A=∠1,∵AC∥DF,∴∠D=∠1,∴∠A=∠D.A.在△ABC和△DEF中,∵AB=DE,∠A=∠D,AC=DF,∴△ABC≌△DEF(SAS),故A不符合题意;B.EF=BC,无法证明△ABC≌△DEF(ASS);故B符合题意;C.在△ABC和△DEF中,∵∠B=∠E,∠A=∠D,AC=DF,∴△ABC≌△DEF(AAS),故C不符合题意;D.∵EF∥BC,∴∠B=∠2,∵AB∥DE,∴∠E=∠2,∴∠B=∠E,在△ABC和△DEF中,∵∠B=∠E,∠A=∠D,AC=DF,∴△ABC≌△DEF(AAD),故D不符合题意;故选B.【点睛】本题主要考查了平行线的性质,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA、SSA不能判定两个三角形全等.5、B【分析】根据等边三角形,等腰直角三角形的性质和外角的性质以及“手拉手”模型,证明,可得,由已知条件得出,结合的直角三角形的性质可得的值.【详解】,,,,又,为等边三角形,,是等边三角形,所以在和中,,,,,故选:B.【点睛】考查了等腰直角三角形,等边三角形和外角性质,以及“手拉手”模型证明三角形全等,全等三角形的性质,和的直角三角形的性质的应用,注意几何综合题目的相关知识点要熟记.6、C【解析】试题分析:根据AB=AC,利用三角形内角和定理求出∠ABC的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE的度数:∵AB=AC,∴∠ABC=∠ACB.∵∠A=30°,∴∠ABC=∠ACB=.∵以B为圆心,BC长为半径画弧,∴BE=BD=BC.∴∠BDC=∠ACB=75°.∴∠CBD.∴∠DBE=75°30°=45°.∴∠BED=∠BDE=.故选C.考点:1.等腰三角形的性质;2.三角形内角和定理.7、C【分析】由题意可知小明所走的路线为一个正多边形,根据多边形的外角和进行分析即可求出答案.【详解】解:正多边形的边数为:360°÷18°=20,∴路程为:15×20=300(米).故选:C.【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键.8、A【分析】观察图象可知,y随x的增大而减小,而当x=0时,y=1,根据一次函数的增减性,得出结论.【详解】解:把A(0,1)和B(2,0)两点坐标代入y=kx+b中,得,解得∴y=-x+1,∵-<0,y随x的增大而减小,∴当x>0时,y<1.故选A.【点睛】首先能够根据待定系数法正确求出直线的解析式.在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.9、B【分析】根据整式的混合运算法则即可求解.【详解】A.,故错误;B.,正确;C.,故错误;D.,故错误;故选B.【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则.10、A【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把看作常数合并关于的同类项,的一次项系数为0,得出的关系.【详解】∵又∵的积中不含的一次项∴∴与一定是互为相反数故选:A.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.11、B【解析】由题意得:∠C=∠D,∵∠1=∠C+∠3,∠3=∠2+∠D,∴∠1=∠2+∠C+∠D=∠2+2∠C,∴∠1-∠2=2∠C=80°.故选B.点睛:本题主要运用三角形外角的性质结合轴对称的性质找出角与角之间的关系.12、D【分析】根据平行线的性质、三角形的内角和定理和对顶角的性质逐一判断即可.【详解】解:A.两直线平行,内错角相等,是真命题,故不符合题意;B.三角形内角和等于180°,是真命题,故不符合题意;C.对顶角相等,是真命题,故不符合题意;D.相等的角不一定是对顶角,故符合题意.故选D.【点睛】此题考查的是真假命题的判断,掌握平行线的性质、三角形的内角和定理和对顶角的性质是解决此题的关键.二、填空题(每题4分,共24分)13、6或1【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=6,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC=1,P、C重合.【详解】解:①当AP=CB时,

∵∠C=∠QAP=90°,

在Rt△ABC与Rt△QPA中,,

∴Rt△ABC≌Rt△QPA(HL),

即;

②当P运动到与C点重合时,AP=AC,

在Rt△ABC与Rt△QPA中,

,∴Rt△QAP≌Rt△BCA(HL),

即,

∴当点P与点C重合时,△ABC才能和△APQ全等.

综上所述,AP=6或1.

故答案为6或1.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.14、四【解析】根据两直线平行的问题得到k=2,然后根据一次函数与系数的关系判定y=2x+1所经过的象限,则可得到y=kx+1不经过的象限.解:∵直线y=kx+1与y=2x-1平行,∴k=2,∴直线y=kx+1的解析式为y=2x+1,∴直线y=2x+1经过第一、二、三象限,∴y=kx+1不经过第四象限.故答案为四.15、12°.【解析】设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x.∴∠P2P1P3=∠P13P14P12=2x,∠P2P3P4=∠P13P12P10=3x,……,∠P7P6P8=∠P8P9P7=7x.∴∠AP7P8=7x,∠AP8P7=7x.在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°.解得x=12°,即∠A=12°.16、且【分析】根据分式有意义则分母不为零判断即可.【详解】解:∵有意义∴,解得:且故答案是:且.【点睛】本题主要考察分式有无意义的问题,抓准有无意义的特点是解题的关键.17、6【分析】根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.【详解】故个多边形是六边形.故答案为:6.【点睛】本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.18、【分析】根据乘积二倍项和已知平方项确定出这两个数为和,再利用完全平方式求解即可.【详解】解:,.故答案为:16.【点睛】本题主要了完全平方式,根据乘积二倍项确定出这两个数是求解的关键.三、解答题(共78分)19、见解析【分析】直接利用旋转图形是全等图形的性质来构造图形.【详解】解:如图所示:.【点睛】此题主要考查了中心对称图形图形的性质,找出全等图形的对称中心是解题关键.20、(1)仓库有甲种规格的纸板1000张,有乙种规格的纸板1600张;(2)2400个.【分析】(1)设仓库有甲种规格的纸板x张,则有乙种规格的纸板(2600-x)张,根据“每个盒子由3个长方形侧面和2个正三角形底面组成,裁剪出的侧面和底面恰好全部用完”,列出方程,即可求解;(2)由(1)求出裁得的长方形个数,进而即可得到答案.【详解】(1)设仓库有甲种规格的纸板x张,则有乙种规格的纸板(2600-x)张,根据题意得:4x+2(2600-x)=3(2600-x)×1.5,解得:x=1000,2600-x=1600(张),答:仓库有甲种规格的纸板1000张,有乙种规格的纸板1600张;(2)当x=1000时,4x+2(2600-x)=7200(个),7200÷3=2400(个),答:一共能生产2400个巧克力包装盒.【点睛】本题主要考查一元一次方程的实际应用,找出等量关系,列出一元一次方程,是解题的关键.21、且m≠1.【分析】根据(m-1)x2-2mx+m+3=0,方程有两个实数根,从而得出△≥0,即可解出m的范围.【详解】∵方程有两个实数根,∴△≥0;

(-2m)2-4(m-1)(m+3)≥0;

∴;又∵方程是一元二次方程,∴m-1≠0;解得m≠1;∴当且m≠1时方程有两个实数根.【点睛】本题考查了根的判别式以及一元二次方程的定义,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.22、解决问题(1)1;(2)全等;(3)见解析;变式探究:1或.【分析】解决问题(1)当t=1时,AP的长=速度×时间;(2)算出三角形的边,根据全等三角形的判定方法判定;(3)利用同角的余角相等证明∠DPQ=90°;变式探究若与全等,则有两种情况:①≌②≌,分别假设两种情况成立,利用对应边相等求出t值.【详解】解:解决问题(1)∵t=1,点P的运动速度为,∴AP=1×1=1cm;(2)全等,理由是:当t=1时,可知AP=1,BQ=1,又∵AB=4,BC=3,∴PB=3,在△ADP与△BPQ中,,∴△ADP≌△BPQ(SAS)(3)∵△ADP≌△BPQ,∴∠APD=∠PQB,∵∠PQB+∠QPB=90°,∴∠APD+∠QPB=90°,∴∠DPQ=90°,即DP⊥PQ.变式探究①若≌,则AP=BQ,即1×t=x×t,x=1;②若≌,AP=BP,即点P为AB中点,此时AP=2,t=2÷1=2s,AD=BQ=3,∴x=3÷2=cm/s.综上:当与全等时,x的取值为1或.【点睛】本题考查了全等三角形的判定和性质,注意在运动中对三角形全等进行分类讨论,从而得出不同情况下的点Q速度.23、(1)见详解;(2)见详解;(3)点、点【分析】(1)根据A,B坐标的特点在第二象限找到A,B的位置,O为坐标原点,然后顺次连接即可;(2)根据关于轴对称的点的特点:横坐标互为相反数,纵坐标不变,找到相应的点,顺次连接即可;(3)根据关于轴对称的点的特点:横坐标互为相反数,纵坐标不变即可写出点、点的坐标.【详解】(1)如图(2)如图(3)根据关于轴对称的点的特点:横坐标互为相反数,纵坐标不变即可得点、点【点睛】本题主要考查画轴对称图形,掌握关于轴对称的点的特点是解题的关键.24、(1)证明见解析(1)1【解析】试题分析:(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;(1)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出DE﹣BE=DE﹣DF=EF=1HE=1.试题解析:(1)∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(1)∵CD=BD,∴∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论