




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.解分式方程时,去分母后变形为A. B.C. D.2.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为()A.22 B.22.5 C.23 D.253.等腰三角形一个角的度数为50°,则顶角的度数为()A.50° B.80° C.65° D.50°或80°4.下列各组数中,不能作为直角三角形的三边长的是()A.7,24,25 B.9,12,15 C.,, D.,,5.下列条件中,不能作出唯一三角形的是()A.已知三角形两边的长度和夹角的度数B.已知三角形两个角的度数以及两角夹边的长度C.已知三角形两边的长度和其中一边的对角的度数D.已知三角形的三边的长度6.八年级学生去距学校s千米的博物馆参观,一部分同学骑自行车先走,过了1小时后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的m倍,设骑车同学的速度为x千米/小时,则可列方程()A.=+1 B.-=1 C.=+1 D.=17.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.-=20 B.-=20 C.-= D.=8.下列图形具有两条对称轴的是()A.等边三角形 B.平行四边形 C.矩形 D.正方形9.如图,它由两块相同的直角梯形拼成,由此可以验证的算式为()A. B.C. D.10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为尺,绳子长为尺,则下列符合题意的方程组是()A. B. C. D.二、填空题(每小题3分,共24分)11.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.12.如图,在中,,,,为的中点,为线段上任意一点(不与端点重合),当点在线段上运动时,则的最小值为__________.13.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=2,[-2.5]=-2.现对82进行如下操作:82[]=9[]=2[]=2,这样对82只需进行2次操作后变为2,类似地,对222只需进行___________次操作后变为2.14.在平面直角坐标系中,的顶点B在原点O,直角边BC,在x轴的正半轴上,,点A的坐标为,点D是BC上一个动点(不与B,C重合),过点D作交AB边于点E,将沿直线DE翻折,点B落在x轴上的F处.(1)的度数是_____________;(2)当为直角三角形时,点E的坐标是________________.15.若多项式是一个完全平方式,则m的值为______.16.将一副直角三角板按如图所示叠放在一起,则图中∠α的度数是________.17.如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=50°,则∠DCE的度数是__.18._______三、解答题(共66分)19.(10分)请按要求完成下面三道小题.(1)如图1,∠BAC关于某条直线对称吗?如果是,请画出对称轴尺规作图,保留作图痕迹;如果不是,请说明理由.(2)如图2,已知线段AB和点C(A与C是对称点).求作线段,使它与AB成轴对称,标明对称轴b,操作如下:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3,任意位置的两条线段AB,CD,且AB=CD(A与C是对称点).你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法或画出对称轴(尺规作图,保留作图痕迹);如果不能,请说明理由.20.(6分)如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.⑴若∠AFD=155°,求∠EDF的度数;⑵若点F是AC的中点,求证:∠CFD=∠B.21.(6分)如图所示,在中,,D是上一点,过点D作于点E,延长和,相交于点F,求证:是等腰三角形.22.(8分)将一副直角三角板如图摆放,等腰直角板ABC的斜边BC与含30°角的直角三角板DBE的直角边BD长度相同,且斜边BC与BE在同一直线上,AC与BD交于点O,连接CD.求证:△CDO是等腰三角形.23.(8分)如图,长方形AEFG是由长方形ABDC绕着A点顺时针旋转90°得到的,连结AD,AF,FD.(1)若△ADF的面积是,△ABD的面积是6,求△ABD的周长;(2)设△ADF的面积是S1,四边形DBGF的面积是S2,试比较2S1与S2的大小,并说明理由.24.(8分)下列方程及方程组(1)(2)25.(10分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,过点的直线交轴于,且面积为.(1)求点的坐标及直线的解析式.(2)如图1设点为线段中点,点为轴上一动点,连接,以为边向右侧作以为直角顶点的等腰,在点运动过程中,当点落在直线上时,求点的坐标.(3)如图2,若为线段上一点,且满足,点为直线上一动点,在轴上是否存在点,使以点,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.26.(10分)在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,则∠ABD的度数为_____,∠BDF的度数为______;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN,若BN=DN,∠ACB=.(I)用表示∠BAD;(II)①求证:∠ABN=30°;②直接写出的度数以及△BMN的形状.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:方程,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.2、B【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b,将x=4时,y=20;x=12时,y=30代入求得k、b值,可得函数解析式,再将x=6代入求得对应的y值即可.【详解】设当4≤x≤12时函数的解析式为y=kx+b(k≠0),由图象,将x=4时,y=20;x=12时,y=30代入,得:,解得:,∴,当x=6时,,故选:B.【点睛】本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.3、D【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以分两种情况,①50°为顶角;②50°为底角来讨论.【详解】(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°-2×50°=80°,所以D选项是正确的,故本题选D.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,若没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是解答问题的关键.4、C【分析】根据勾股定理依次判断各选项即可.【详解】A、,故能构成直角三角形;B、,故能构成直角三角形;C、,故不能构成直角三角形;D、,故能构成直角三角形;故选C.【点睛】本题是对勾股定理逆定理的考查,熟练掌握定理是解决本题的关键.5、C【解析】看是否符合所学的全等的公理或定理即可.【详解】A、符合全等三角形的判定SAS,能作出唯一三角形;
B、两个角对应相等,夹边确定,如这样的三角形可作很多则可以依据ASA判定全等,因而所作三角形是唯一的;
C、已知两边和其中一边的对角对应相等,也不能作出唯一三角形,如等腰三角形底边上的任一点与顶点之间的线段两侧的三角形;
D、符合全等三角形的判定SSS,能作出唯一三角形;故选C.【点睛】本题主要考查由已知条件作三角形,可以依据全等三角形的判定来做.6、A【分析】设骑车同学的速度为x千米/小时,则汽车的速度为mx千米/小时,根据时间=路程÷速度结合骑车的同学比乘车的同学多用1小时,即可得出关于x的分式方程,此题得解.【详解】设骑车同学的速度为x千米/小时,则汽车的速度为mx千米/小时,根据题意得:=+1.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7、C【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,
-=,
故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.8、C【分析】根据轴对称图形及对称轴的定义,结合所给图形即可作出判断.【详解】A、等边三角形有3条对称轴,故本选项错误;B、平行四边形无对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、正方形有4条对称轴,故本选项错误,故选C.【点睛】本题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等.9、A【分析】根据图中边的关系,可求出两图的面积,而两图面积相等,从而推导出了平方差的公式.【详解】如图,拼成的等腰梯形如下:上图阴影的面积s=a2−b2,下图等腰梯形的面积s=2(a+b)(a−b)÷2=(a+b)(a−b),两面积相等所以等式成立a2−b2=(a+b)(a−b).这是平方差公式.故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是求出两图的面积,而两图面积相等,从而推导出了平方差的公式.10、B【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【详解】用一根绳子去量一根长木,绳子还剩余4.5尺,则,将绳子对折再量长木,长木还剩余1尺,则,∴,故选B.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.二、填空题(每小题3分,共24分)11、110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.12、【分析】本题为拔高题,过点C作AB的垂线交AB于点F,可以根据直角三角形中30°角的特性,得出EF与关系,最后得到,可知当DE-EF为0时,有最小值.【详解】过点C作AB的垂线交AB于点F,得到图形如下:根据直角三角形中30°角的特性,可知由此可知故可知,当DE与EF重合时,两条线之间的差值为0,故则的最小值为.【点睛】本题属于拔高题,类似于“胡不归”问题,综合性强,是对动点最值问题的全面考察,是中学应该掌握的内容.13、2【分析】[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.【详解】解:∴对222只需进行2次操作后变为2,故答案为:2.【点睛】本题考查了估算无理数的大小,解决本题的关键是明确[x]表示不大于x的最大整数.14、30°(1,)或(2,)【分析】(1)根据∠ACB=90°以及点A的坐标,得到AC和BC的长,再利用特殊角的三角函数值求解即可;(2)根据直角三角形的定义可分三种情况考虑:①当∠AEF=90°时,②当∠AEF=90°时,③当∠EAF=90°时,三种情况分别求解.【详解】解:(1)∵∠ACB=90°,点A的坐标为,∴AC=,BC=3,∴tan∠ABC==,∴∠ABC=30°,故答案为:30°;(2)△AEF为直角三角形分三种情况:①当∠AEF=90°时,
∵∠OED=∠FED,且∠OED+∠FED+∠AEF=180°,
∴∠OED=45°.
∵∠ACB=90°,点A的坐标为,∴tan∠ABC=,∠ABC=30°.
∵ED⊥x轴,
∴∠OED=90°-∠ABC=60°.
45°≠60°,此种情况不可能出现;②当∠AFE=90°时,
∵∠OED=∠FED=60°,
∴∠AEF=60°,
∵∠AFE=90°,
∴∠EAF=90°-∠AEF=30°.
∵∠BAC=90°-∠ABC=60°,
∴∠FAC=∠BAC-∠EAF=60°-30°=30°.
∵AC=,∴CF=AC•tan∠FAC=1,
∴OF=OC-FC=3-1=2,∴OD=1,∴DE=tan∠ABC×OD=,∴点E的坐标为(1,);③当∠EAF=90°时,
∵∠BAC=60°,
∴∠CAF=∠EAF-∠EAC=90°-60°=30°,
∵AC=,∴CF=AC•tan∠FAC=1,
∴OF=OC+CF=3+1=4,∴OD=2,∴DE=tan∠ABC×OD=,∴点E的坐标为(2,);综上知:若△AEF为直角三角形.点E的坐标为(1,)或(2,).故答案为:(1,)或(2,).【点睛】本题考查了一次函数图象与几何变换、角的计算以及解直角三角形,解题的关键是根据角的计算以及解直角三角形找出CF的长度.本题属于中档题,难度不大,但在解决该类题型时,部分同学往往会落掉2种情况,因此在平常教学中应多加对学生引导,培养他们考虑问题的全面性.15、±1【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】∵1x2+mx+1=(2x)2+mx+12,
∴mx=±2×2x×1,
解得m=±1.
故答案为:±1.【点睛】考查了完全平方式,解题的关键是熟记完全平方公式,并根据平方项确定出这两个数.16、75°【分析】根据直角三角形的两锐角互余求出∠1的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠1=90°-60°=30°,所以,∠α=45°+30°=75°.故答案为75°【点睛】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.17、10°.【分析】根据∠ECD=∠ECB-∠DCB,求出∠ECB,∠DCB即可解决问题.【详解】∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=100°,∵EC平分∠ACB,∵∠ECB=∠ACB=50°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=90°﹣50°=40°,∴∠ECD=∠ECB﹣∠DCB=50°﹣40°=10°,故答案为10°.【点睛】本题考查三角形内角和定理,角平分线的定义,三角形的高等知识,解题的关键是熟练掌握基本知识.18、【分析】根据幂的运算法则即可求解.【详解】故答案为:.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算法则.三、解答题(共66分)19、(1)∠BAC关于∠ABC的平分线所在直线a对称,见解析;(2)见解析;(3)其中一条线段作2次的轴对称即可使它们重合,见解析【分析】(1)作∠ABC的平分线所在直线a即可;(2)先连接AC;作线段AC的垂直平分线,即为对称轴b;作点B关于直线b的对称点D;连接CD即为所求.(3)先类比(2)的步骤画图,通过一次轴对称,把问题转化为(1)的情况,再做一次轴对称即可满足条件.【详解】解:(1)如图1,作∠ABC的平分线所在直线a.(答案不唯一)(2)如图2所示:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的角平分线所在直线d即为对称轴,故其中一条线段作2次的轴对称即可使它们重合.【点睛】本题主要考查了利用轴对称变换进行作图,几何图形都可看做是有点组成,在画一个图形的轴对称图形时,是先从确定一些特殊的对称点开始.20、(1)50°;(2)见解析【解析】试题分析:⑴根据等腰三角形的性质、三角形的内角和定理与四边形的内角和为360°,可求得所求角的度数.⑵连接BF,根据三角形内角和定理与等腰三角形三线合一,可知.试题解析:⑴∵∠AFD=155°,∴∠DFC=25°,∵DF⊥BC,DE⊥AB,∴∠FDC=∠AED=90°,在Rt△EDC中,∴∠C=90°﹣25°=65°,∵AB=BC,∴∠C=∠A=65°,∴∠EDF=360°﹣65°﹣155°﹣90°=50°.⑵连接BF,∵AB=BC,且点F是AC的中点,∴BF⊥AC,,∴∠CFD+∠BFD=90°,∠CBF+∠BFD=90°,∴∠CFD=∠CBF,∴.21、证明见解析.【分析】根据等边对等角可得∠B=∠C,再根据直角三角形两锐角互余和等角的余角相等可得∠F=∠2,再结合对顶角的定义∠F=∠1,最后根据等角对等边即可证明.【详解】解:∵AB=AC,
∴∠B=∠C,
∵FE⊥BC,
∴∠F+∠C=90°,∠2+∠B=90°,
∴∠F=∠2,
而∠2=∠1,
∴∠F=∠1,
∴AF=AD,
∴△ADF是等腰三角形;【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠1,即可推出结论.22、证明见解析【解析】试题分析:根据等腰三角形的性质和三角形的内角和定理求得∠BDC=∠BCD=75°,在根据三角形外角的性质求得∠DOC=75°,即可得∠DOC=∠BDC,结论得证.试题解析:证明:∵在△BDC中,BC=DB,∴∠BDC=∠BCD.∵∠DBE=30°∴∠BDC=∠BCD=75°,∵∠ACB=45°,∴∠DOC=30°+45°=75°.∴∠DOC=∠BDC,∴△CDO是等腰三角形.23、(1)12;(2),见解析【分析】(1)长方形AEFG是由长方形ABDC绕着A点顺时针旋转90°得到的,根据图形旋转性质,可得∠DAF=,且AD=AF,已知△ADF的面积是,可得AD=AF=5,,已知△ABD的面积是6,可得,即可求出AB和BD,进而求出△ABD的周长.(2)根据图形旋转的性质将S1和S2表示出来,分别利用了三角形面积公式和题型面积公式,再判断2S1-S2和0的大小关系,即可求解.【详解】(1)∵长方形AEFG是由长方形ABDC绕着A点顺时针旋转90°得到的∴∠DAF=90°那么∴AD2=25,AF=AD=5∴而,∴AB∙BD=12∴AB=3,BD=4∴故答案为:12(2)由(1)可知∴2S1=𝐴𝐷2∵∴四边形DBGF是梯形∵AB=GF,BD=AG在Rt△BAD中0∴【点睛】本题考查了图形旋转的性质,勾股定理解直角三角形,本题还利用了三角形面积公式和梯形面积公式.24、(1)或;(2)【分析】(1)方程两边先除以2,再开方,求出x的值即可;(2)将方程①两边同时乘以2,再减去方程②,消去未知数x,得到关于y的一元一次方程,求出y,再代入①求出x即可;【详解】(1),则,∴或,∴或;(2),①×2,得4x+10y=50③,③−②,得7y=35,解得y=5,把y=5代入①,得2x+25=25,解得x=0,∴方程组的解是【点睛】本题考查了二元一次方程组的解法,解二元一次方程组的基本思想是消元,基本解法是代入法与加减法,是基础知识,需熟练掌握,也考查了利用平方根的意义解一元二次方程.25、(1),直线的解析式为.(2)坐标为或.(3)存在,满足条件的点的坐标为或或.【分析】(1)利用三角形的面积公式求出点C坐标,再利用待定系数法即可解答;(2)分两种情况:①当时,如图,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,,求出点;②当时,如图,同法可得,再将解代入直线解析式求出n值即可解答;(3)利用三角形面积公式求出点M的坐标,求出直线AM的解析式,作BE∥OC交直线于,此时,当时,可得四边形,四边形是平行四边形,可得,,再根据对称性可得即可解答.【详解】(1)直线与轴交于点,与轴交于点,,,,,,,,,设直线的解析式为,则有,,直线的解析式为.(2),,,,设,①当时,如图,点落在上时,过作直线平行于轴,过点,作该直线的垂线,垂足分别为,.是等腰直角三角形,易证,,,,点在直线,,,.②当时,如图,同法可得,点在直线上,,,.综上所述,满足条件的点坐标为或.(3)如图,设,,,,,,直线的解析式为,作交直线于,此时,当时,可得四边形,四边形是平行四边形,可得,,当点在第三象限,由BC=DE,根据对称性知,点D关于点A对称的点也符合条件,综上所述,满足条件的点的坐标为或或.【点睛】本题考查三角形的面积、待定系数法求直线解析式、全等三角形的判定与性质、平行四边形的判定与性质,是一次函数与几何图形的综合题,解答的关键是理解题意,认真分析,结合图形,寻找相关联的信息,利用待定系数法、数形结合等解题方法进行推理、计算.26、(1)10°,20°;(2)(Ⅰ);(II)①证明见解析;②=40°,△BMN等腰三角形.【分析】(1)由等边三角形的性质可得AD=AC,∠CAD=60°,利用等量代换可得AD=AB,根据等腰三角形的性质即可求出∠ABD的度数,由等腰三角形“三线合一”的性质可得∠ADE=30°,进而可求出∠BDF的度数;(2)(Ⅰ)根据等腰三角形的性质可用表示出∠BAC,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 森林区划与经营类型
- 离婚协议书模板:房产、车辆分割及债务处理
- 二手房买卖合同签订后的房屋交易产权过户及登记手续
- 男方家庭暴力受害者女方全面权益保障离婚协议
- 离婚协议财产分割及房产分割与子女抚养费支付起诉状
- 农村电商项目投资借款合同模板及扶贫协议
- 二婚再婚家庭财产分配及子女抚养责任协议书
- 小飞机粘土课件
- 2025年单招试题及答案技术
- 邮储银行2025安阳市秋招笔试英语题专练及答案
- 中国大模型落地应用研究报告2025
- 2025年中国汽车摆臂行业投资前景及策略咨询研究报告
- 2025至2030中国甲氧基乙酸甲酯行业发展趋势分析与未来投资战略咨询研究报告
- 小区住宅景观设计要点解析
- 江苏手术分级管理制度
- 呼吸机管道安全管理体系
- 2025年重庆市中考英语试卷真题(含标准答案及解析)
- 2025年中考历史总复习中国古代史专题复习资料
- 单用途卡资金管理制度
- 酒驾科目一考试模拟试题及答案
- 林区施工防火管理制度
评论
0/150
提交评论