




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南株洲市景炎学校2025届数学九上期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A. B. C.10 D.82.若反比例函数的图像在第二、四象限,则它的解析式可能是()A. B. C. D.3.若关于x的一元二次方程有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.04.如图,在平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2,则下列说法正确的是()A.A1的坐标为(3,1) B.S四边形ABB1A1=3 C.B2C=2 D.∠AC2O=45°5.如图,在正方形ABCD中,AB=4,AC与相交于点O,N是AO的中点,点M在BC边上,P是OD的中点,过点P作PM⊥BC于点M,交于点N′,则PN-MN′的值为()A. B. C. D.6.设m是方程的一个较大的根,n是方程的一个较小的根,则的值是()A. B. C.1 D.27.如图,Rt△ABC中,∠C=90°,AC=3,BC=1.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S1.则S1﹣S2+S3+S1等于()A.1 B.6 C.8 D.128.下列判断错误的是()A.有两组邻边相等的四边形是菱形 B.有一角为直角的平行四边形是矩形C.对角线互相垂直且相等的平行四边形是正方形 D.矩形的对角线互相平分且相等9.如图,在平面直角坐标系中,⊙O的半径为1,则直线与⊙O的位置关系是()A.相离 B.相切 C.相交 D.以上三种情况都有可能10.如图所示,的顶点是正方形网格的格点,则的值为()A. B. C. D.11.某工厂一月份生产机器100台,计划二、三月份共生产机器240台,设二、三月份的平均增长率为x,则根据题意列出方程是()A.100(1+x)2=240B.100(1+x)+100(1+x)2=240C.100+100(1+x)+100(1+x)2=240D.100(1﹣x)2=24012.抛物线y=2x2,y=﹣2x2,y=2x2+1共有的性质是()A.开口向上 B.对称轴都是y轴C.都有最高点 D.顶点都是原点二、填空题(每题4分,共24分)13.计算sin60°tan60°-cos45°cos60°的结果为______.14.m、n分别为的一元二次方程的两个不同实数根,则代数式的值为________15.如图,扇形OAB的圆心角为110°,C是上一点,则∠C=_____°.16.如图,已知⊙的半径为1,圆心在抛物线上运动,当⊙与轴相切时,圆心的坐标是___________________.17.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.18.已知函数,当时,函数值y随x的增大而增大.三、解答题(共78分)19.(8分)元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.20.(8分)下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=________°()(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.21.(8分)如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连接AE,BD交于点F.(1)若点E为CD中点,AB=2,求AF的长.(2)若∠AFB=2,求的值.(3)若点G在线段BF上,且GF=2BG,连接AG,CG,设=x,四边形AGCE的面积为,ABG的面积为,求的最大值.22.(10分)如图,在平面直角坐标系xOy中,直线y=x﹣2与反比例函数y=(k为常数,k≠0)的图象在第一象限内交于点A,点A的横坐标为1.(1)求反比例函数的表达式;(2)设直线y=x﹣2与y轴交于点C,过点A作AE⊥x轴于点E,连接OA,CE.求四边形OCEA的面积.23.(10分)抛物线y=ax2+bx+1经过点A(﹣1,0),B(1,0),与y轴交于点C.点D(xD,yD)为抛物线上一个动点,其中1<xD<1.连接AC,BC,DB,DC.(1)求该抛物线的解析式;(2)当△BCD的面积等于△AOC的面积的2倍时,求点D的坐标;(1)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,求出点M的坐标;若不存在,请说明理由.24.(10分)期中考试中,A,B,C,D,E五位同学的数学、英语成绩有如表信息:ABCDE平均分中位数数学7172696870英语8882948576(1)完成表格中的数据;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标准分=(个人成绩﹣平均成绩)÷成绩方差.从标准分看,标准分高的考试成绩更好,请问A同学在本次考试中,数学与英语哪个学科考得更好?25.(12分)如图,AB是的直径,AC为弦,的平分线交于点D,过点D的切线交AC的延长线于点E.求证:;.26.如图,已知为⊙的直径,为⊙的一条弦,点是⊙外一点,且,垂足为点,交⊙于点,的延长线交⊙于点,连接.(1)求证:;(2)若,求证:是⊙的切线;(3)若,,求⊙的半径.
参考答案一、选择题(每题4分,共48分)1、A【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【详解】解:如图,连结AE,设AC交EF于O,依题意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因为EF为线段AC的中垂线,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【点睛】本题考查了全等三角形的判定、勾股定理,熟练掌握是解题的关键.2、A【分析】根据反比例函数的定义及图象经过第二、四象限时,判断即可.【详解】解:、对于函数,是反比例函数,其,图象位于第二、四象限;、对于函数,是正比例函数,不是反比例函数;、对于函数,是反比例函数,图象位于一、三象限;、对于函数,是二次函数,不是反比例函数;故选:A.【点睛】本题考查了反比例函数、反比例的图象和性质,可以采用排除法,直接法得出答案.3、D【解析】由题意可知,该一元二次方程根的判别式的值大于零,即(-2)2-4m>0,∴m<1.对照本题的四个选项,只有D选项符合上述m的取值范围.故本题应选D.4、D【解析】试题分析:如图:A、A1的坐标为(1,3),故错误;B、=3×2=6,故错误;C、B2C==,故错误;D、变化后,C2的坐标为(-2,-2),而A(-2,3),由图可知,∠AC2O=45°,故正确.故选D.5、A【分析】根据正方形的性质可得点O为AC的中点,根据三角形中位线的性质可求出PN的长,由PM⊥BC可得PM//CD,根据点P为OD中点可得点N′为OC中点,即可得出AC=4CN′,根据MN′//AB可得△CMN′∽△CBA,根据相似三角形的性质可求出MN′的长,进而可求出PN-MN′的长.【详解】∵四边形ABCD是正方形,AB=4,∴OA=OC,AD=AB=4,∵N是AO的中点,P是OD的中点,∴PN是△AOD的中位线,∴PN=AD=2,∵PM⊥BC,∴PM//CD//AB,∴点N′为OC的中点,∴AC=4CN′,∵PM//AB,∴△CMN′∽△CBA,∴,∴MN′=1,∴PN-MN′=2-1=1,故选:A.【点睛】本题考查正方形的性质、三角形中位线的性质及相似三角形的判定与性质,三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握三角形中位线的性质及相似三角形的判定定理是解题关键.6、C【分析】先解一元二次方程求出m,n即可得出答案.【详解】解方程得或,则,解方程,得或,则,,故选:C.【点睛】本题考查了解一元二次方程,掌握方程解法是解题关键.7、B【解析】本题先根据正方形的性质和等量代换得到判定全等三角形的条件,再根据全等三角形的判定定理和面积相等的性质得到S、S、、与△ABC的关系,即可表示出图中阴影部分的面积和.本题的着重点是等量代换和相互转化的思想.【详解】解:如图所示,过点F作FG⊥AM交于点G,连接PF.根据正方形的性质可得:AB=BE,BC=BD,∠ABC+∠CBE=∠CBE+∠EBD=90,即∠ABC=∠EBD.在△ABC和△EBD中,AB=EB,∠ABC=∠EBD,BC=BD所以△ABC≌△EBD(SAS),故S=,同理可证,△KME≌△TPF,△FGK≌△ACT,因为∠QAG=∠AGF=∠AQF=90,所以四边形AQFG是矩形,则QF//AG,又因为QP//AC,所以点Q、P,F三点共线,故S+S=,S=.因为∠QAF+∠CAT=90,∠CAT+∠CBA=90,所以∠QAF=∠CBA,在△AQF和△ACB中,因为∠AQF=∠ACB,AQ=AC,∠QAF=∠CAB所以△AQF≌△ACB(ASA),同理可证△AQF≌△BCA,故S1﹣S2+S3+S1==31=6,故本题正确答案为B.【点睛】本题主要考查正方形和全等三角形的判定与性质.8、A【分析】根据菱形,矩形,正方形的判定逐一进行分析即可.【详解】A.有两组邻边相等的四边形不一定是菱形,故该选项错误;B.有一角为直角的平行四边形是矩形,故该选项正确;C.对角线互相垂直且相等的平行四边形是正方形,故该选项正确;D.矩形的对角线互相平分且相等,故该选项正确;故选:A.【点睛】本题主要考查菱形,矩形,正方形的判定,掌握菱形,矩形,正方形的判定方法是解题的关键.9、B【详解】解:如图,在中,令x=0,则y=-;令y=0,则x=,∴A(0,-),B(,0).∴OA=OB=.∴△AOB是等腰直角三角形.∴AB=2,过点O作OD⊥AB,则OD=BD=AB=×2=1.又∵⊙O的半径为1,∴圆心到直线的距离等于半径.∴直线y=x-2与⊙O相切.故选B.10、B【分析】连接CD,求出CD⊥AB,根据勾股定理求出AC,在Rt△ADC中,根据锐角三角函数定义求出即可.【详解】解:连接CD(如图所示),设小正方形的边长为,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,则.故选B.【点睛】本题考查了勾股定理,锐角三角形函数的定义,等腰三角形的性质,直角三角形的判定的应用,关键是构造直角三角形.11、B【分析】设二、三月份的平均增长率为x,则二月份的生产量为100×(1+x),三月份的生产量为100×(1+x)(1+x),根据二月份的生产量+三月份的生产量=1台,列出方程即可.【详解】设二、三月份的平均增长率为x,则二月份的生产量为100×(1+x),三月份的生产量为100×(1+x)(1+x),根据题意,得100(1+x)+100(1+x)2=1.故选B.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,设出未知数,正确找出等量关系是解决问题的关键.12、B【详解】(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=2x2+1开口向上,对称轴为y轴,有最低点,顶点为(0,1).故选B.二、填空题(每题4分,共24分)13、1【分析】直接利用特殊角的三角函数值分别代入求出答案.【详解】解:原式=1【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.14、1【分析】由一元二次方程的解的定义可得m2-4m-1=1,则m2-4m=1,再由根于系数的关系可得mn=-1,最后整体代入即可解答.【详解】解:∵m、n分别为的一元二次方程∴m+n=4,mn=-1,m2-4m-1=1,∴m2-4m=1∴=1-1=1故答案为1.【点睛】本题考查了一元二次方程的解和根与系数的关系,其中正确运用根与系数的关系是解答本题的关键.15、1【分析】作所对的圆周角∠ADB,如图,根据圆周角定理得到∠ADB=∠AOB=55°,然后利用圆内接四边形的性质计算∠C的度数.【详解】解:作所对的圆周角∠ADB,如图,∴∠ADB=∠AOB=×110°=55°,∵∠ADB+∠C=180°,∴∠C=180°﹣55°=1°.故答案为1.【点睛】本题考查了圆的综合问题,掌握圆周角定理、圆内接四边形的性质是解题的关键.16、或或或【分析】根据圆与直线的位置关系可知,当⊙与轴相切时,P点的纵坐标为1或-1,把1或-1代入到抛物线的解析式中求出横坐标即可.【详解】∵⊙的半径为1,∴当⊙与轴相切时,P点的纵坐标为1或-1.当时,,解得,∴此时P的坐标为或;当时,,解得,∴此时P的坐标为或;故答案为:或或或.【点睛】本题主要考查直线与圆的位置关系和已知函数值求自变量,根据圆与x轴相切找到点P的纵坐标的值是解题的关键.17、3【解析】试题分析:设最大利润为w元,则w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.考点:3.二次函数的应用;3.销售问题.18、x≤﹣1.【解析】试题分析:∵=,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y随x的增大而增大,故答案为x≤﹣1.考点:二次函数的性质.三、解答题(共78分)19、(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)的值为2或7.【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为元/千克,元/千克.由题得:解之得:答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:解之得:,经检验,,均符合题意答:的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.20、(1)补全图形见解析;(2)90;直径所对的圆周角是直角.【分析】(1)根据题中得方法依次作图即可;(2)直径所对的圆周角是直角,据此填写即可.【详解】(1)补全图形如图(2)∵直径所对的圆周角是直角,∴∠OAP=∠OBP=90°,故答案为:90;直径所对的圆周角是直角,【点睛】本题主要考查了尺规作图以及圆周角性质,熟练掌握相关方法是解题关键.21、(1);(2);(3).【分析】(1)由可得DE的长,利用勾股定理可得AE的长,又易证,由相似三角形的性质可得,求解即可得;(2)如图(见解析),连接AC与BD交于点O,由正方形的性质可知,,,设,在中,可求出,从而可得DF和BF的长,即可得出答案;(3)设正方形的边长,可得DE、AO、BO、BD的长,由可得BF的长,又根据可得BG的长,从而可得的面积,用正方形的面积减去三个三角形的面积可得四边形AGCE的面积,再利用二次函数的性质求解的最大值.【详解】(1)为CD中点,,,即又;(2)如图,连接AC与BD交于点O由正方形的性质得,设在中,,;(3)设正方形的边长,则由(1)知,又又又由二次函数图象的性质得:当时,有最大值,最大值为.【点睛】本题考查了相似三角形的判定定理和性质、正切三角函数、二次函数图象的性质,难度较大的是题(3),利用相似三角形的性质求出BG的长是解题关键.22、(1)y=;(2)2.【分析】(1)先求出点A的坐标,然后利用待定系数法即可求出结论;(2)先求出点C的坐标,然后求出点E的坐标,最后利用四边形OCEA的面积=+即可得出结论.【详解】解:(1)当x=1时,y=x﹣2=1﹣2=2,则A(1,2),把A(1,2)代入y=得k=1×2=2,∴反比例函数解析式为y=;(2)当x=0时,y=x﹣2=﹣2,则C(0,﹣2),∵AE⊥x轴于点E,∴E(1,0),∴四边形OCEA的面积=+=×1×2+×1×2=2.【点睛】此题考查的是反比例函数与一次函数的交点问题,掌握利用待定系数法求反比例函数解析式和三角形的面积公式是解决此题的关键.23、(1)抛物线的解析式为y=﹣x2+2x+1;(2)点D坐标(2,1);(1)M坐标(1,0)或(,0)或(﹣,0)或(5,0)【分析】(1)利用待定系数法求函数解析式;(2)根据解析式先求出△AOC的面积,设点D(xD,yD),由直线BC的解析式表示点E的坐标,求出DE的长,再由△BCD的面积等于△AOC的面积的2倍,列出关于xD的方程得到点D的坐标;(1)设点M(m,0),点N(x,y),分两种情况讨论:当BD为边时或BD为对角线时,列中点关系式解答.【详解】解:(1)∵抛物线y=ax2+bx+1经过点A(﹣1,0),B(1,0),∴,解得:∴抛物线的解析式为y=﹣x2+2x+1;(2)如图,过点D作DH⊥x轴,与直线BC交于点E,∵抛物线y=﹣x2+2x+1,与y轴交于点C,∴点C(0,1),∴OC=1,∴S△AOC=×1×1=,∵点B(1,0),点C(0,1)∴直线BC解析式为y=﹣x+1,∵点D(xD,yD),∴点E(xD,﹣xD+1),yD=﹣xD2+2xD+1,∴DE=﹣xD2+2xD+1﹣(﹣xD+1)=﹣xD2+1xD,∴S△BCD=1=×DE×1,∵△BCD的面积等于△AOC的面积的2倍∴2=﹣xD2+1xD,∴xD=1(舍去),xD=2,∴点D坐标(2,1);(1)设点M(m,0),点N(x,y)当BD为边,四边形BDNM是平行四边形,∴BN与DM互相平分,∴,∴y=1,∴1=﹣x2+2x+1∴x=2(不合题意),x=0∴点N(0,1)∴,∴m=1,当BD为边,四边形BDMN是平行四边形,∴BM与DN互相平分,∴,∴y=﹣1,∴﹣1=﹣x2+2x+1∴x=1±,∴,∴m=±,当BD为对角线,∴BD中点坐标(,),∴,,∴y=1,∴1=﹣x2+2x+1∴x=2(不合题意),x=0∴点N(0,1)∴m=5,综上所述点M坐标(1,0)或(,0)或(﹣,0)或(5,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式,动线、动图形与抛物线的结合问题,在(1)使以点B,D,M,N为顶点的四边形是平行四边形时,要分情况讨论:当BD为边时或BD为对角线时,不要有遗漏,平行四边形的性质:对角线互相平分,列中点坐标等式求得点M的坐标.24、(1)70,70,85,85;(2)数学.【分析】(1)由平均数、中位数的定义进行计算即可;(2)代入公式:标准分=(个人成绩﹣平均成绩)÷成绩方差计算,再比较即可.【详解】(1)数学平均分是:×(71+72+69+68+70)=70分,中位数为:70分;英语平均分是:×(88+82+94+85+76)=85分,中位数为:85分;故答案为:70,70,85,85;(2)数学成绩的方差为:[(71﹣70)2+(72﹣70)2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国包装园区行业市场前景预测及投资价值评估分析报告
- 网络直播平台音乐版权改编与版权授权协议
- 抖音火花剧情号短视频内容合作与独家授权合同
- 文学小说版权购买与系列出版合同
- 影视动画配音服务与品牌合作推广协议
- 文旅地产项目委托经营管理及资源整合协议
- 影视动画渲染节点租赁与专业级存储技术支持协议
- 房地产项目配套工程补偿协议
- 生物医药企业劳动争议预防与员工权益保护合作协议
- 网上购物平台出口退税担保与税收风险防范合同
- 针灸治疗之蛇串疮课件
- 大型商场装修施工组织设计方案
- 【MOOC】材料力学-西北工业大学 中国大学慕课MOOC答案
- 《英语翻译》教案全套 陈霞 第1-8章 中西方翻译史 - 文体翻译
- 人教版(2024)八年级上册物理期中模拟试卷3套(含答案)
- DB11∕T 2115-2023 机械式停车设备使用管理和维护保养安全技术规范
- 北京市通州区2023-2024学年四年级下学期语文期末试卷
- 2024年四川省绵阳市中考学情调查地理试题(原卷版)
- 穿越时空的音乐鉴赏之旅智慧树知到期末考试答案章节答案2024年浙江中医药大学
- 重庆市藻渡水库工程环境影响报告书-上报
- DZ∕T 0207-2020 矿产地质勘查规范 硅质原料类(正式版)
评论
0/150
提交评论