江苏省淮安市清江浦中学2022-2023学年数学九年级第一学期期末监测试题含解析_第1页
江苏省淮安市清江浦中学2022-2023学年数学九年级第一学期期末监测试题含解析_第2页
江苏省淮安市清江浦中学2022-2023学年数学九年级第一学期期末监测试题含解析_第3页
江苏省淮安市清江浦中学2022-2023学年数学九年级第一学期期末监测试题含解析_第4页
江苏省淮安市清江浦中学2022-2023学年数学九年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.102.如图,A、D是⊙O上的两点,BC是直径,若∠D=40°,则∠ACO=()A.80° B.70° C.60° D.50°3.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A. B. C. D.4.下列命题是真命题的是()A.如果|a|=|b|,那么a=bB.平行四边形对角线相等C.两直线平行,同旁内角互补D.如果a>b,那么a2>b25.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A. B. C. D.6.在中,,,则的值为()A. B. C. D.7.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A.AE=OE B.CE=DE C.OE=CE D.∠AOC=60°8.抛物线与y轴的交点为()A. B. C. D.9.在比例尺为1:100000的城市交通图上,某道路的长为3厘米,则这条道路的实际距离为()千米.A.3 B.30 C.3000 D.0.310.已知一个菱形的周长是,两条对角线长的比是,则这个菱形的面积是()A. B. C. D.11.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度为()A.1:2 B.1:3 C.1: D.:112.如图所示,∆ABC的顶点在正方形网格的格点上,则cosB=()A. B. C. D.二、填空题(每题4分,共24分)13.如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为_____.14.如图,在中,,,为边上的一点,且,若的面积为,则的面积为__________.15.已知二次函数的图像开口向上,则的值为________.16.抛物线的顶点坐标是__________.17.两块大小相同,含有30°角的三角板如图水平放置,将△CDE绕点C按逆时针方向旋转,当点E的对应点E′恰好落在AB上时,△CDE旋转的角度是______度.18.如图,直线与双曲线交于点,点是直线上一动点,且点在第二象限.连接并延长交双曲线与点.过点作轴,垂足为点.过点作轴,垂足为,若点的坐标为,点的坐标为,设的面积为的面积为,当时,点的横坐标的取值范围为_________.三、解答题(共78分)19.(8分)如图,AB是⊙O的直径,CD是⊙O的弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若,AE=1,求劣弧BD的长.20.(8分)解方程(1)x2+4x﹣3=0(用配方法)(2)3x(2x+3)=4x+621.(8分)如图,△ABC的高AD、BE相交于点F.求证:.22.(10分)若的整数部分为,小数部分为;(1)直接写出_________,__________;(2)计算的值.23.(10分)如图,有三张不透明的卡片,除正面标记有不同数字外,其它均相同.将这三张卡片反面朝上洗匀后,从中随机抽取一张;放回洗匀后,再随机抽取一张.我们把第一次抽取的卡片上标记的数字记作,第二次抽取的卡片上标记的数字记作.(1)写出为负数的概率;(2)求使得一次函数的图象经过第二、三、四象限的概率.(用树状图或列表法求解)24.(10分)如图,有一个三等分数字转盘,小红先转动转盘,指针指向的数字记下为,小芳后转动转盘,指针指向的数字记下为,从而确定了点的坐标,(若指针指向分界线,则重新转动转盘,直到指针指向数字为止)(1)小红转动转盘,求指针指向的数字2的概率;(2)请用列举法表示出由,确定的点所有可能的结果.(3)求点在函数图象上的概率.25.(12分)一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).(1)小红摸出标有数3的小球的概率是.(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.(3)求点P(x,y)在函数y=﹣x+5图象上的概率.26.一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球.(1)“其中有1个球是黑球”是事件;(2)求2个球颜色相同的概率.

参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14考点:二次函数的性质2、D【分析】根据圆周角的性质可得∠ABC=∠D,再根据直径所对圆周角是直角,即可得出∠ACO的度数.【详解】∵∠D=40°,∴∠AOC=2∠D=80°,∵OA=OC,∴∠ACO=∠OAC=(180°﹣∠AOC)=50°,故选:D.【点睛】本题考查圆周角的性质,关键在于熟练掌握圆周角的性质,特别是直径所对的圆周角是直角.3、C【分析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4、C【解析】根据绝对值的定义,平行线的性质,平行四边形的性质,不等式的性质判断即可.【详解】A、如果|a|=|b|,那么a=±b,故错误;B、平行四边形对角线不一定相等,故错误;C、两直线平行,同旁内角互补,故正确;D、如果a=1>b=﹣2,那么a2<b2,故错误;故选C.【点睛】本题考查了绝对值,不等式的性质,平行线的性质,平行四边形的性质,熟练掌握各性质定理是解题的关键.5、D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=1.A.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.,对应边,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.6、D【分析】在Rt△ABC中,∠C=90°,则∠A+∠B=90°,根据互余两角的三角函数的关系就可以求解.【详解】解:在Rt△ABC中,∠C=90°,∠A+∠B=90°,则cosB=sinA=.故选:D.【点睛】本题考查了互余两角三角函数的关系,在直角三角形中,互为余角的两角的互余函数相等.7、B【分析】根据垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧求解.【详解】解:∵直径AB⊥弦CD∴CE=DE故选B.【点睛】本题考查垂径定理,本题属于基础应用题,只需学生熟练掌握垂径定理,即可完成.8、C【解析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,

∴抛物线与y轴的交点为(0,3),

故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.9、A【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【详解】解:设这条道路的实际长度为x,则=,

解得x=300000cm=3km.

∴这条道路的实际长度为3km.

故选A.【点睛】本题考查成比例线段问题,能够根据比例尺正确进行计算,注意单位的转换10、D【分析】首先可求出菱形的边长,设菱形的两对角线分别为8x,6x,由勾股定理求出x的值,从而可得两条对角线的长,根据菱形的面积等于对角线乘积的一半列式计算即可求解.【详解】解:∵菱形的边长是20cm,∴菱形的边长=20÷4=5cm,∵菱形的两条对角线长的比是,∴设菱形的两对角线分别为8x,6x,∵菱形的对角线互相平分,∴对角线的一半分别为4x,3x,由勾股定理得:,解得:x=1,∴菱形的两对角线分别为8cm,6cm,∴菱形的面积=cm2,故选:D.【点睛】本题考查了菱形的性质、勾股定理,主要理由菱形的对角线互相平分的性质,以及菱形的面积等于对角线乘积的一半.11、A【解析】根据坡面距离和垂直距离,利用勾股定理求出水平距离,然后求出坡度.【详解】水平距离==4,则坡度为:1:4=1:1.故选A.【点睛】本题考查了解直角三角形的应用,解答本题的关键是掌握坡度的概念:坡度是坡面的铅直高度h和水平宽度l的比.12、C【分析】先设小正方形的边长为1,再建构直角三角形,然后根据锐角三角函数的定义求解即可;【详解】解:如图,过A作AD⊥CB于D,设小正方形的边长为1,则BD=AD=3,AB=∴cos∠B=;故选C.【点睛】本题主要考查了锐角三角函数的定义,勾股定理,掌握锐角三角函数的定义,勾股定理是解题的关键.二、填空题(每题4分,共24分)13、πa【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长=,那么勒洛三角形的周长为【详解】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长=,∴勒洛三角形的周长为故答案为πa.【点睛】本题考查了弧长公式:(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.14、1【分析】首先判定△ADC∽△BAC,然后得到相似比,根据面积比等于相似比的平方可求出△BAC的面积,减去△ADC的面积即为△ABD的面积.【详解】∵∠CAD=∠B,∠C=∠C∴△ADC∽△BAC∴相似比则面积比∴∴故答案为:1.【点睛】本题考查了相似三角形的判定与性质,熟记相似三角形的面积比等于相似比的平方是解题的关键.15、2【分析】根据题意:的最高次数为2,由开口向上知二次项系数大于0,据此求解即可.【详解】∵是二次函数,

∴,即

解得:,

又∵图象的开口向上,

∴,

∴.故答案为:.【点睛】本题综合考查了二次函数的性质及定义,要注意二次项系数的取值范围.16、(-1,-3)【分析】根据抛物线顶点式得顶点为可得答案.【详解】解:∵抛物线顶点式得顶点为,∴抛物线的顶点坐标是(-1,-3)故答案为(-1,-3).【点睛】本题考查了二次函数的顶点式的顶点坐标,熟记二次函数的顶点式及坐标是解题的关键.17、1【分析】根据旋转性质及直角三角形两锐角互余,可得△E′CB是等边三角形,从而得出∠ACE′的度数,再根据∠ACE′+∠ACE´=90°得出△CDE旋转的度数.【详解】解:根据题意和旋转性质可得:CE´=CE=BC,∵三角板是两块大小一样且含有1°的角,∴∠B=60°∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=1°,故答案为:1.【点睛】本题考查了旋转的性质、等边三角形的判定和性质,本题关键是得到△ABC等边三角形.18、-3<x<-1【分析】根据点A的坐标求出中k,再根据点B在此图象上求出点B的横坐标m,根据结合图象即可得到答案.【详解】∵A(-1,3)在上,∴k=-3,∵B(m,1)在上,∴m=-3,由图象可知:当时,点P在线段AB上,∴点P的横坐标x的取值范围是-3<x<-1,故答案为:-3<x<-1.【点睛】此题考查一次函数与反比例函数交点问题,反比例函数解析式的求法,正确理解题意是解题的关键.三、解答题(共78分)19、(1)见解析;(2).【分析】(1)由等腰三角形的性质与圆周角定理,易得∠BCO=∠B=∠D;

(2)由垂径定理可求得CE与DE的长,然后证得△BCE∽△DAE,再由相似三角形的对应边成比例,求得BE的长,继而求得直径与半径,再求出圆心角∠BOD即可解决问题;【详解】(1)证明:∵OB=OC,∴∠BCO=∠B,∵∠B=∠D,∴∠BCO=∠D;(2)解:连接OD.∵AB是⊙O的直径,CD⊥AB,∴,∵∠B=∠D,∠BEC=∠DEC,∴△BCE∽△DAE,∴AE:CE=DE:BE,∴,解得:BE=3,∴AB=AE+BE=4,∴⊙O的半径为2,∵,∴∠EOD=60°,∴∠BOD=120°,∴的长.【点睛】此题考查圆周角定理、垂径定理、相似三角形的判定与性质以及等腰三角形的性质.注意在同圆或等圆中,同弧或等弧所对的圆周角相等.证得△BCE∽△DAE是解题关键.20、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=,x2=﹣.【解析】(1)原式利用配方法求出解即可;(2)原式整理后,利用因式分解法求出解即可.【详解】(1)方程整理得:x2+4x=3,配方得:x2+4x+4=7,即(x+2)2=7,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣;(2)方程整理得:3x(2x+3)﹣2(2x+3)=0,分解因式得:(3x﹣2)(2x+3)=0,可得3x﹣2=0或2x+3=0,解得:x1=,x2=﹣.【点睛】此题考查了解一元二次方程﹣因式分解法,以及配方法,熟练掌握各种解法是解本题的关键.21、见解析【分析】由题意可证△AEF∽△BDF,可得,即可得.【详解】解:证明:∵AD,BE是△ABC的高,

∴∠ADB=∠AEF=90°,且∠AFE=∠BFD,∴△AEF∽△BDF,∴,

∴.【点睛】本题考查了相似三角形的判定与性质,熟练运用相似三角形的性质是本题的关键.22、(1),;(2).【分析】先根据算术平方根的定义得到1<<2,则x=1,y=-1,然后把x、y的值代入,再进行二次根式的混合运算即可.【详解】解:解:∵1<3<4,

∴1<<2,

∴x=1,y=-1,(2)当时,原式【点睛】本题考查估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查二次根式的混合运算.23、(1);(2)【分析】(1)用负数的个数除以数的总数即为所求的概率;

(2)画树状图列举出所有情况,看k<0,b<0的情况占总情况的多少即可.【详解】解:(1)共有3个数,其中负数有2个,那么为负数的概率为(2)画树状图可知,两次抽取卡片试验共有9种不同结果,每种可能性相同“一次函数图象经过第二、三、四象限”等价于“且”抽取卡片满足,有4种情况所以,一次函数图象经过第二、三、四象限的概率是.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.注意过二、三、四象限的一次函数的k为负数,b为负数.24、(1);(2)见解析,共9种,;(3)【分析】(1)转动一次有三种可能,出现数字2只有一种情况,据此可得出结果;

(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论