




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.一元二次方程x2﹣3x﹣4=0的一次项系数是()A.1 B.﹣3 C.3 D.﹣42.已知关于x的一元二次方程x2+x+m=0的一个实数根为1,那么它的另一个实数根是()A.-2 B.0 C.1 D.23.如图,是的边上的一点,下列条件不可能是的是()A. B.C. D.4.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.5.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是()A. B. C. D.6.如图所示,⊙的半径为13,弦的长度是24,,垂足为,则A.5 B.7 C.9 D.117.从﹣1,0,1,2,3这五个数中,任意选一个数记为m,能使关于x的不等式组有解,并且使一元二次方程(m﹣1)x2+2mx+m+2=0有实数根的数m的个数为()A.1个 B.2个 C.3个 D.4个8.如图,函数与函数在同一坐标系中的图象如图所示,则当时().A.1x1 B.1x0或x1 C.1x1且x0 D.0x1或x19.已知是实数,则代数式的最小值等于()A.-2 B.1 C. D.10.如图,正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数y=2x2﹣4的图象上,则图中阴影部分的面积之和为()A.6 B.8 C.10 D.1211.已知一个几何体如图所示,则该几何体的左视图是()A. B. C. D.12.正五边形的每个内角度数为()A.36° B.72° C.108° D.120°二、填空题(每题4分,共24分)13.抛物线y=4x2﹣3x与y轴的交点坐标是_____.14.如图,正方形的顶点、在圆上,若,圆的半径为2,则阴影部分的面积是__________.(结果保留根号和)15.某县为做大旅游产业,在2018年投入资金3.2亿元,预计2020年投入资金6亿元,设旅游产业投资的年平均增长率为,则可列方程为____.16.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.17.如图,,如果,,,那么___________.18.同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为___________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数的图象上.(1)求反比例函数的表达式;(2)在x轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.20.(8分)如图,利用尺规,在△ABC的边AC下方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD=AB.(尺规作图要求保留作图痕迹,不写作法)21.(8分)已知二次函数(k是常数)(1)求此函数的顶点坐标.(2)当时,随的增大而减小,求的取值范围.(3)当时,该函数有最大值,求的值.22.(10分)对于平面直角坐标系中的两个图形K1和K2,给出如下定义:点G为图形K1上任意一点,点H为K2图形上任意一点,如果G,H两点间的距离有最小值,则称这个最小值为图形K1和K2的“近距离”。如图1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),边长为的正方形PQMN,对角线NQ平行于x轴或落在x轴上.(1)填空:①原点O与线段BC的“近距离”为;②如图1,正方形PQMN在△ABC内,中心O’坐标为(m,0),若正方形PQMN与△ABC的边界的“近距离”为1,则m的取值范围为;(2)已知抛物线C:,且-1≤x≤9,若抛物线C与△ABC的“近距离”为1,求a的值;(3)如图2,已知点D为线段AB上一点,且D(5,-2),将△ABC绕点A顺时针旋转α(0º<α≤180º),将旋转中的△ABC记为△AB’C’,连接DB’,点E为DB’的中点,当正方形PQMN中心O’坐标为(5,-6),直接写出在整个旋转过程中点E运动形成的图形与正方形PQMN的“近距离”.23.(10分)某化工厂要在规定时间内搬运1200吨化工原料.现有,两种机器人可供选择,已知型机器人比型机器人每小时多搬运30吨型,机器人搬运900吨所用的时间与型机器人搬运600吨所用的时间相等.(1)求两种机器人每小时分别搬运多少吨化工原料.(2)该工厂原计划同时使用这两种机器人搬运,工作一段时间后,型机器人又有了新的搬运任务需离开,但必须保证这批化工原料在11小时内全部搬运完毕.问型机器人至少工作几个小时,才能保证这批化工原料在规定的时间内完成?24.(10分)已知:二次函数y=x2﹣6x+5,利用配方法将表达式化成y=a(x﹣h)2+k的形式,再写出该函数的对称轴和顶点坐标.25.(12分)关于x的方程有两个不相等的实数根.(1)求m的取值范围;(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.26.一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?
参考答案一、选择题(每题4分,共48分)1、B【解析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中bx叫一次项,系数是b,可直接得到答案.【详解】解:一次项是:未知数次数是1的项,故一次项是﹣3x,系数是:﹣3,故选:B.【点睛】此题考查的是求一元一次方程一般式中一次项系数,掌握一元一次方程的一般形式和一次项系数的定义是解决此题的关键.2、A【解析】设方程的另一个实数根为x,则根据一元二次方程根与系数的关系,得x+1=-1,解得x=-1.故选A.3、B【分析】根据相似三角形的判定判断各选项即可进行解答.【详解】解:A、∵∠ACP=∠B,∠A=∠A,∴△ACP∽△ABC,故本选项不符合题意;B、∵,缺少夹角相等,∴不可判定△ACP∽△ABC,故本选项符合题意;C、∵∠APC=∠ACB,∠A=∠A,∴△ACP∽△ABC,故本选项不符合题意;D、∵,∠A=∠A,∴△ACP∽△ABC,故本选项不符合题意.故选:B.【点睛】本题考查相似三角形的判定.要找的对应边与对应角,公共角是很重要的一个量,要灵活加以利用.4、C【分析】根据轴对称图形和中心对称图形的概念逐一进行判断即可得.【详解】A、是轴对称图形,不是中心对称图形,故不符合题意;B、是轴对称图形,不是中心对称图形,故不符合题意;C、是轴对称图形,也是中心对称图形,故符合题意;D、是轴对称图形,不是中心对称图形,故不符合题意,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.5、A【解析】由勾股定理,得AC=,由正切函数的定义,得tanA=,故选A.6、A【详解】试题分析:已知⊙O的半径为13,弦AB的长度是24,,垂足为N,由垂径定理可得AN=BN=12,再由勾股定理可得ON=5,故答案选A.考点:垂径定理;勾股定理.7、B【分析】根据一元一次不等式组可求出m的范围,根据判别式即可求出答案.【详解】解:∵∴2﹣2m≤x≤2+m,由题意可知:2﹣2m≤2+m,∴m≥0,∵由于一元二次方程(m﹣1)x2+2mx+m+2=0有实数根,∴△=4m2﹣4(m﹣1)(m+2)=8﹣4m≥0,∴m≤2,∵m﹣1≠0,∴m≠1,∴m的取值范围为:0≤m≤2且m≠1,∴m=0或2故选:B.【点睛】本题考查不等式组的解法以及一元二次方程,解题的关键是熟练运用根的判别式.8、B【分析】根据题目中的函数解析式和图象可以得到当时的x的取值范围,从而可以解答本题.【详解】根据图象可知,当函数图象在函数图象上方即为,∴当时,1x0或x1.故选B.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于利用函数图象解决问题.9、C【分析】将代数式配方,然后利用平方的非负性即可求出结论.【详解】解:====∵∴∴代数式的最小值等于故选C.【点睛】此题考查的是利用配方法求最值,掌握完全平方公式是解决此题的关键.10、B【分析】根据抛物线和正方形的对称性求出OD=OC,并判断出S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),把点B的坐标代入抛物线解析式求出n的值得到点B的坐标,然后求解即可.【详解】解:∵四边形ABCD为正方形,抛物线y=2x2﹣4和正方形都是轴对称图形,且y轴为它们的公共对称轴,∴OD=OC=,S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),∵点B在二次函数y=2x2﹣4的图象上,∴2n=2n2﹣4,解得,n1=2,n2=﹣1(舍负),∴点B的坐标为(2,4),∴S阴影=S矩形BCOE=2×4=1.故选:B.【点睛】此题考查的是抛物线和正方形的对称性的应用、求二次函数上点的坐标和矩形的面积,掌握抛物线和正方形的对称性、求二次函数上点的坐标和矩形的面积公式是解决此题的关键.11、B【解析】根据左视图的定义:由物体左边向右做正投影得到的视图(不可见的用虚线),判断即可.【详解】解:根据左视图的定义可知:该几何体的左视图为:故选:B.【点睛】此题考查的是判断一个几何体的左视图,掌握左视图的定义:由物体左边向右做正投影得到的视图(不可见的用虚线),是解决此题的关键.12、C【解析】根据多边形内角和公式:,得出正五边形的内角和,再根据正五边形的性质:五个角的角度都相等,即可得出每个内角的度数.【详解】解:故选:C【点睛】本题考查的是多边形的内角和公式以及正五边形的性质,掌握这两个知识点是解题的关键.二、填空题(每题4分,共24分)13、(0,0)【解析】根据y轴上的点的特点:横坐标为0.可代入求得y=0,因此可得抛物线y=4x2-3x与y轴的交点坐标是(0,0).故答案为(0,0).14、【分析】设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF为圆的直径,从而求出AF,然后根据锐角三角函数和勾股定理,即可求出∠AFB和BF,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG、AG和∠EOF,最后利用S阴影=S梯形AFCD-S△AOE-S扇形EOF计算即可.【详解】解:设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE∵四边形ABCD是正方形∴∠ABF=90°,AD∥BC,BC=CD=AD=cm∴AF为圆的直径∵,圆的半径为2,∴AF=4cm在Rt△ABF中sin∠AFB=,BF=∴∠AFB=60°,FC=BC-BF=∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt△AOG中,OG=sin∠EAF·AO=,AG=cos∠EAF·AO=1cm根据垂径定理,AE=2AG=2cm∴S阴影=S梯形AFCD-S△AOE-S扇形EOF===故答案为:.【点睛】此题考查的是求不规则图形的面积,掌握正方形的性质、90°的圆周角对应的弦是直径、垂径定理、勾股定理和锐角三角函数的结合和扇形的面积公式是解决此题的关键.15、【分析】根据题意,找出题目中的等量关系,列出一元二次方程即可.【详解】解:根据题意,设旅游产业投资的年平均增长率为,则;故答案为:.【点睛】本题考查了一元二次方程的应用——增长率问题,解题的关键是熟练掌握增长率问题的等量关系,正确列出一元二次方程.16、.【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.考点:列表法与树状图法.17、1【分析】由于l1∥l2∥l3,根据平行线分线段成比例得到,然后把数值代入求出DF.【详解】解:∵l1∥l2∥l3,
∴,即,
∴DE=1.故答案为:1【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.18、【分析】首先根据题意画出图形,设出圆的半径,分别求出圆中内接正三角形、内接正四边形、内接正六边形的边长,即可得出答案.【详解】设圆的半径为r,如图①,过点O作于点C则如图②,如图③,为等边三角形∴同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为故答案为【点睛】本题主要考查圆的半径与内接正三角形,正方形和正六边形的边长之间的关系,能够画出图形是解题的关键.三、解答题(共78分)19、(1);(2)P(,0);(3)E(,﹣1),在.【分析】(1)将点A(,1)代入,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(,﹣3),计算求出S△AOB=××4=.则S△AOP=S△AOB=.设点P的坐标为(m,0),列出方程求解即可;(3)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣,﹣1),即可求解.【详解】(1)∵点A(,1)在反比例函数的图象上,∴k=×1=,∴反比例函数的表达式为;(2)∵A(,1),AB⊥x轴于点C,∴OC=,AC=1,由射影定理得=AC•BC,可得BC=3,B(,﹣3),S△AOB=××4=,∴S△AOP=S△AOB=.设点P的坐标为(m,0),∴×|m|×1=,∴|m|=,∵P是x轴的负半轴上的点,∴m=﹣,∴点P的坐标为(,0);(3)点E在该反比例函数的图象上,理由如下:∵OA⊥OB,OA=2,OB=,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,∴E(,﹣1),∵×(﹣1)=,∴点E在该反比例函数的图象上.考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转.20、作图见解析,证明见解析.【分析】根据作一个角等于已知角的作法画出∠CAE并截取AD=BC即可画出图形,利用SAS即可证明△ACB≌△CAD,可得CD=AB.【详解】如图所示:∵AC=CA,∠ACB=∠CAD,AD=CB,∴△ACB≌△CAD(SAS),∴CD=AB.【点睛】本题考查尺规作图——作一个角等于已知角及全等三角形的判定与性质,正确作出图形并熟练掌握全等三角形的判定定理是解题关键.21、(1);(2);(3)或【分析】(1)先求出顶点横坐标,然后代入解析式求出顶点纵坐标即可;(2)根据二次函数的增减性列式解答即可;(3)分三种情况求解:①当k>1时,当k<0时,当时.【详解】解:(1)对称轴为:,代入函数得:,∴顶点坐标为:;(2)∵对称轴为:x=k,二次函数二次项系数小于零,开口向下;∴当时,y随x增大而减小;∵当时,y随x增大而减小;∴(3)①当k>1时,在中,y随x增大而增大;∴当x=1时,y取最大值,最大值为:;∴k=3;②当k<0时,在中,y随x增大而减小;∴当x=0时,y取最大值,最大值为:;∴;∴;③当时,在中,y随x先增大再减小;∴当x=k时,y取最大值,最大值为:;∴;解得:k=2或-1,均不满足范围,舍去;综上所述:k的值为-2或3.【点睛】本题考察了二次函数的图像和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),当a>0时,开口向上,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大;当a<0时,开口向下,在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.22、(1)①2;②;(2)或;(3)点E运动形成的图形与正方形PQMN的“近距离”为.【分析】(1)①由垂线段最短,即可得到答案;②根据题意,找出正方形PQMN与△ABC的边界的“近距离”为1,的临界点,然后分别求出m的最小值和最大值,即可得到m的取值范围;(2)根据题意,抛物线与△ABC的“近距离”为1时,可分为两种情况:当点C到抛物线的距离为1,即CD=1;当抛物线与线段AB的距离为1时,即GH=1;分别求出a的值,即可得到答案;(3)根据题意,取AB的中点F,连接EF,求出EF的长度,然后根据题意,求出点F,点Q的坐标,求出FQ的长度,即可得到EQ的长度,即可得到答案.【详解】解:(1)①∵B(9,2),C(,2),∴点B、C的纵坐标相同,∴线段BC∥x轴,∴原点O到线段BC的最短距离为2;即原点O与线段BC的“近距离”为2;故答案为:2;②∵A(-1,-8),B(9,2),C(-1,2),∴线段BC∥x轴,线段AC∥y轴,∴AC=BC=10,△ABC是等腰直角三角形,当点N与点O重合时,点N与线段AC的最短距离为1,则正方形PQMN与△ABC的边界的“近距离”为1,此时m为最小值,∵正方形的边长为,由勾股定理,得:,∴,(舍去);当点Q到线段AB的距离为1时,此时m为最大值,如图:∵QN=1,△QMN是等腰直角三角形,∴QM=,∵BD=9,△BDE是等腰直角三角形,∴DE=9,∵△OEM是等腰直角三角形,∴OE=OM=7,∴m的最大值为:,∴m的取值范围为:;故答案为:;(2)抛物线C:,且,若抛物线C与△ABC的“近距离”为1,由题可知,点C与抛物线的距离为1时,如图:∵点C的坐标为(,2),∴但D的坐标为(,3),把点D代入中,有,解得:;当线段AB与抛物线的距离为1时,近距离为1,如图:即GH=1,点H在抛物线上,过点H作AB的平行线,线段AB与y轴相交于点F,作FE⊥EH,垂足为E,∴EF=GH=1,∵∠FDE=∠A=45°,∴,∵点A(-1,-8),B(9,2),设直线AB为,∴,解得:,∴直线AB的解析式为:,∴直线EH的解析式为:;∴联合与,得,整理得:,∵直线EH与抛物线有一个交点,∴,解得:;综合上述,a的值为:或;(3)由题意,取AB的中点F,连接EF,如图:∵点A(-1,-8),B(9,2),∴,在中,F是AD的中点,点E是的中点,∴,∵点D的坐标为(5,-2),A(-1,-8),∴点F的坐标为(2,),∵在正方形PNMQ中,中心点的坐标为(5,),∴点Q的坐标为(6,),∴,∴;∴点E运动形成的图形与正方形PQMN的“近距离”为.【点睛】本题考查了图形的运动问题和最短路径问题,考查了二次函数的性质,正方形的性质,等腰直角三角形的性质,一次函数的平移,勾股定理,旋转的性质,根的判别式等知识,解题的关键是熟练掌握所学的知识,正确作出辅助线,作出临界点的图形,从而进行分析.注意运用数形结合的思想和分类讨论的思想进行解题.难度很大,是中考压轴题.23、(1)型机器人每小时搬运90吨化工原料,型机器人每小时搬运60吨化工原料;(2)A型机器人至少工作6小时,才能保证这批化工原料在规定的时间内完成.【分析】(1)设B型机器人每小时搬运x吨化工原料,则A型机器人每小时搬运(x+30)吨化工原料,根据A型机器人搬运900吨所用的时间与B型机器人搬运600吨所用的时间相等建立方程求出其解就可以得出结论.
(2)设A型机器人工作t小时,根据这批化工原料在11小时内全部搬运完毕列出不等式求解.【详解】解:(1)设型机器人每小时搬运吨化工原料,则型机器人每小时搬运吨化工原料,根据题意,得,解得.经检验,是所列方程的解.当时,.答:型机器人每小时搬运90吨化工原料,型机器人每小时搬运60吨化工原料;(2)设型机器人工作小时,根据题意,得,解得.答:A型机器人至少工作6小时,才能保证这批化工原料在规定的时间内完成.【点睛】本题考查的是分式方程应用题和列不等式求解问题,找相等关系式是解题关键,(1)根据A型机器人搬运900千克所用的时间与B型机器人搬运600千克所用的时间相等建立方程,分式方程应用题的解需要双检,一检是否是方程的根,二检是否符合题意;(2)总工作量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股权质押担保协议范本5篇
- 童鞋区域独家总经销代理合同3篇
- 宅基地房屋归属协议书
- 用工合同协议书范本4篇
- (完整版)加固承包合同5篇
- 五级伤残 协商解除合同5篇
- 垫资撤押借款及担保合同模板
- 出口合同-出口商品生产中短期借贷合同3篇
- 委托服务合同模板
- 解除医疗承包合同范本
- 安庆师范大学《曲式分析(Ⅰ)》2023-2024学年第一学期期末试卷
- 中国能源展望2060(2025年版)
- 《新闻传播伦理与法规》大一笔记
- 湖北大学知行学院《面向对象程序设计》2021-2022学年第一学期期末试卷
- 【MOOC】中国特色文化英语教学-苏州大学 中国大学慕课MOOC答案
- 【MOOC】财务会计-淄博职业学院 中国大学慕课MOOC答案
- 机场安检液态物品培训
- 宿舍楼施工组织设计
- 自建房盖房子免责协议书范文
- PAS 2050:2011-商品和服务在生命周期内的温室气体排放评价规范(中文)
- 2024年剑桥KET口语题库(附参考答案)
评论
0/150
提交评论