版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,等腰与等腰是以点为位似中心的位似图形,位似比为,则点的坐标是()A. B. C. D.2.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有人,买鸡的钱数为,依题意可列方程组为()A. B.C. D.3.图中信息是小明和小华射箭的成绩,两人都射了10箭,则射箭成绩的方差较大的是()A.小明 B.小华 C.两人一样 D.无法确定4.已知点,,都在反比例函数的图像上,则()A. B. C. D.5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=100x B.y=C.y=200x D.y=6.方程x2+5x=0的适当解法是()A.直接开平方法 B.配方法C.因式分解法 D.公式法7.抛物线的顶点坐标是A. B. C. D.8.在平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是()A.(2,3)B.(-2,3)C.(-2,-3)D.(-3,2)9.若三角形的两边长分别是4和6,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是()A.13 B.16 C.12或13 D.11或1610.如图,△ABC中,点D为边BC的点,点E、F分别是边AB、AC上两点,且EF∥BC,若AE:EB=m,BD:DC=n,则()A.若m>1,n>1,则2S△AEF>S△ABD B.若m>1,n<1,则2S△AEF<S△ABDC.若m<1,n<1,则2S△AEF<S△ABD D.若m<1,n>1,则2S△AEF<S△ABD二、填空题(每小题3分,共24分)11.如图,在中,点在边上,连接并延长交的延长线于点,若,则__________.12.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率设每次降价的百分率为x,所列方程是______.13.计算_________.14.如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)________.①越来越长,②越来越短,③长度不变.在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是________米.15.步步高超市某种商品为了去库存,经过两次降价,零售价由100元降为64元.则平均每次降价的百分率是____________.16.用纸板制作了一个圆锥模型,它的底面半径为1,高为,则这个圆锥的侧面积为_________.17.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱高为.已知,冬至时北京的正午日光入射角约为,则立柱根部与圭表的冬至线的距离(即的长)为______.18.如图,一个半径为,面积为的扇形纸片,若添加一个半径为的圆形纸片,使得两张纸片恰好能组合成一个圆锥体,则添加的圆形纸片的半径为____.三、解答题(共66分)19.(10分)如图,在平行四边形中,过点作垂足为.连接为线段上一点,且.求证:.20.(6分)将一块面积为的矩形菜地的长减少,它就变成了正方形,求原菜地的长.21.(6分)在平面直角坐标系中,直线与双曲线交于点A(2,a).(1)求与的值;(2)画出双曲线的示意图;(3)设点是双曲线上一点(与不重合),直线与轴交于点,当时,结合图象,直接写出的值.22.(8分)有1张看上去无差别的卡片,上面分别写着1、2、1.随机抽取1张后,放回并混在一起,再随机抽取1张.(I)请你用画树状图法(或列表法)列出两次抽取卡片出现的所有可能结果;(Ⅱ)求两次抽取的卡片上数字之和为偶数的概率.23.(8分)在一个不透明的盒子里,装有四个分别标有数字2、3、4、6的乒乓球,它们的形状、大小、颜色、质地完全相同,耀华同学先从盒子里随机取出一个小球,记为数字x,不放回,再由洁玲同学随机取出另一个小球,记为数字y,(1)用树状图或列表法表示出坐标(x,y)的所有可能出现的结果;(2)求取出的坐标(x,y)对应的点落在反比例函数y=图象上的概率.24.(8分)在如图网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=1.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并直接写出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并直接写出点A2、B2、C2的坐标.25.(10分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?26.(10分)如图,已知一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=交于点C,D.作CE⊥x轴,垂足为E,CF⊥y轴,垂足为F.点B为OF的中点,四边形OECF的面积为16,点D的坐标为(4,﹣b).(1)求一次函数表达式和反比例函数表达式;(2)求出点C坐标,并根据图象直接写出不等式kx+b≤的解集.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据位似比为,可得,从而得:CE=DE=12,进而求得OC=6,即可求解.【详解】∵等腰与等腰是以点为位似中心的位似图形,位似比为,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴点的坐标是:.故选A.【点睛】本题主要考查位似图形的性质,掌握位似图形的位似比等于相似比,是解题的关键.2、D【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有人,买鸡的钱数为,根据题意,得:.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.3、B【分析】根据图中的信息找出波动性小的即可.【详解】解:根据图中的信息可知,小明的成绩波动性小,则这两人中成绩稳定的是小明;
故射箭成绩的方差较大的是小华,
故选:B.【点睛】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、D【解析】根据反比例函数的解析式知图像在二、四象限,y值随着x的增大而减小,故可作出判断【详解】∵k0,∴反比例函数在二、四象限,y值随着x的增大而减小,又∵,在反比例函数的图像上,,2∴0,点在第二象限,故,∴,故选D.【点睛】此题主要考察反比例函数的性质,找到点在第二象限是此题的关键.5、A【解析】由于近视镜度数y(度)与镜片焦距x(米)之间成反比例关系可设y=kx,由200度近视镜的镜片焦距是0.5米先求得k【详解】由题意,设y=kx由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=100x故眼镜度数y与镜片焦距x之间的函数关系式为y=100x故选:A.【点睛】本题考查根据实际问题列反比例函数关系式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.6、C【分析】因为方程中可以提取公因式x,所以该方程适合用因式分解法.因式分解为x(x+5)=0,解得x=0或x=-5.用因式分解法解该方程会比较简单快速.【详解】解:∵x2+5x=0,∴x(x+5)=0,则x=0或x+5=0,解得:x=0或x=﹣5,故选:C.【点睛】本题的考点是解一元二次方程.方法是熟记一元二次方程的几种解法,也可用选项的四种方法分别解题,选择最便捷的方法.7、A【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【详解】∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.【点睛】本题考查了由抛物线的顶点式写出抛物线顶点的坐标,比较容易.8、B【解析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)”解答.【详解】根据中心对称的性质,得点P(2,-3)关于原点对称的点的坐标是(-2,3).故选B.【点睛】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.9、A【分析】首先利用因式分解法求得一元二次方程x2-5x+6=0的两个根,又由三角形的两边长分别是4和6,利用三角形的三边关系,即可确定这个三角形的第三边长,然后求得周长即可.【详解】∵x2-5x+6=0,
∴(x-3)(x-2)=0,
解得:x1=3,x2=2,
∵三角形的两边长分别是4和6,
当x=3时,3+4>6,能组成三角形;
当x=2时,2+4=6,不能组成三角形.
∴这个三角形的第三边长是3,
∴这个三角形的周长为:4+6+3=13.
故选A.【点睛】此题考查了因式分解法解一元二次方程与三角形三边关系的知识.此题难度不大,解题的关键是注意准确应用因式分解法解一元二次方程,注意分类讨论思想的应用.10、D【分析】根据相似三角形的判定与性质,得出,,从而建立等式关系,得出,然后再逐一分析四个选项,即可得出正确答案.【详解】解:∵EF∥BC,若AE:EB=m,BD:DC=n,∴△AEF∽△ABC,∴,∴,∴,∴∴当m=1,n=1,即当E为AB中点,D为BC中点时,,A.当m>1,n>1时,S△AEF与S△ABD同时增大,则或,即2或2>,故A错误;B.当m>1,n<1,S△AEF增大而S△ABD减小,则,即2,故B错误;C.m<1,n<1,S△AEF与S△ABD同时减小,则或,即2或2<,故C错误;D.m<1,n>1,S△AEF减小而S△ABD增大,则,即2<,故D正确.故选D.【点睛】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的性质是解答本题的关键.二、填空题(每小题3分,共24分)11、【分析】根据相似三角形的判定与性质、平行四边形的性质,进而证明,得出线段的比例,即可得出答案【详解】在中,∴AD∥BC,∠DAE=∠CFE,∠ADE=∠FCE,∴△ADE∽△FCE∵DE=2EC,∴AD=2CF,在中,∵AD=BC,等量代换得:BC=2CF∴2:1【点睛】本题考查了相似三角形的判定与性质以及平行四边形的性质,数形结合是解题的关键.12、【分析】根据降价后的价格=降价前的价格×(1-降价的百分率),则第一次降价后的价格是560(1-x),第二次降价后的价格是560(1-x)2,据此列方程即可.【详解】解:设每次降价的百分率为x,由题意得:560(1-x)2=1,故答案为560(1-x)2=1.【点睛】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.13、【分析】先分别计算特殊角的三角函数值,负整数指数幂,再合并即可得到答案.【详解】解:故答案为:【点睛】本题考查的是特殊角三角函数的计算,负整数指数幂的运算,掌握以上知识点是解题的关键.14、①;5.95.【解析】试题解析:小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会越来越长;∵CD∥AB,∴△ECD∽△EBA,∴,即,∴AB=5.95(m).考点:中心投影.15、20%【分析】设平均每次降价的百分率是x,根据“经过两次降价,零售价由100元降为64元”,列出一元二次方程,求解即可.【详解】设平均每次降价的百分率是x,根据题意得:100(1﹣x)2=64,解得:x1=0.2,x2=1.8(舍去),即平均每次降价的百分率是20%.故答案为:20%.【点睛】本题考查了一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题.16、【分析】根据圆锥的侧面积公式计算即可得到结果.【详解】解:根据题意得:S=π×1×=3π,
故填:3π.【点睛】此题考查了圆锥的计算,熟练掌握圆锥的侧面积公式是解本题的关键.17、【分析】直接根据正切的定义求解即可.【详解】在Rt△ABC中,约为,高为,∵tan∠ABC=,∴BC=m.故答案为:.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.18、1【分析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长×母线长÷1,得到圆锥的弧长=1扇形的面积÷母线长,进而根据圆锥的底面半径=圆锥的弧长÷1π求解.【详解】解:∵圆锥的弧长=1×11π÷6=4π,
∴圆锥的底面半径=4π÷1π=1cm,
故答案为1.【点睛】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.三、解答题(共66分)19、详见解析【分析】根据平行四边形的性质可得∠B+∠C=180°,∠ADF=∠DEC,结合∠AFD+∠AFE=180°,,即可得出∠AFD=∠C,进而可证出△ADF∽△DEC【详解】解:四边形是平行四边形,,,.∴△ADF∽△DEC.【点睛】本题考查了相似三角形的判定及平行四边形的性质.解题的关键是根据平行四边形的性质结合角的计算找出∠ADF=∠DEC,∠AFD=∠C.20、原菜地长为.【分析】设原菜地的长为,根据正方形的性质可得原矩形菜地的宽,再根据矩形的面积公式列出方程求解即可.【详解】设原菜地的长为,则原矩形菜地的宽由题意得:解得:,(不合题意,舍去)答:原菜地的长为.【点睛】本题考查了一元二次方程的实际应用,依据题意正确建立方程是解题关键.21、(1),;(2)示意图见解析;(3)6,.【分析】(1)把点A(2,a)代入直线解析式求出a,再把A(2,a)代入双曲线求出k即可;(2)先列表,再描点,然后连线即可;(3)利用数形结思想观察图形即可得到答案.【详解】(1)∵直线过点,∴.又∵双曲线()过点A(2,2),∴.(2)列表如下:x…-4-2-1124…y…-1-2-4421…描点,连线如下:(3)6,.①当点P在第一象限时,如图,过点A作AC⊥y轴于点C,过点P作PD⊥y轴于点D,则△BDP∽△BCA,∴=∵点A(2,2),∴AC=2,OC=2.∴PD=1.即m=1,当m=1时,n=.即OD=4,∴CD=OD-OC=2.∴BD=CD=2.∴OB=BD+OD=6即b=6.②当点p在第三象限时,如图,过点A作AC⊥y轴于点C,过点P作PD⊥y轴于点D,则△BDP∽△BCA,∴=∵点A(2,2),∴AC=2,OC=2.∴PD=1.∵点p在第三象限,∴m=-1,当m=-1时,n=-4,∴OD=4,∵BD=OD-OB=4+b,CD=OC+OB=2-b,∴解得,b=-2.综上所述,b的值为6或-2.【点睛】本题考查了一次函数与反比例函数的综合,掌握相关知识是解题的关键.22、(I)9;(Ⅱ).【解析】(Ⅰ)直接用树状图或列表法等方法列出各种可能出现的结果;(Ⅱ)由(Ⅰ)可知所有9种等可能的结果数,再找出两次抽到的卡片上的数字之和为偶数的有5种.然后根据概率公式求解即可.【详解】解:(Ⅰ)画树状图得:共有9种等可能的结果数;(Ⅱ)由(Ⅰ)可知:共有9种等可能的结果数,两次抽取的卡片上数字之和为偶数的有5种,所以两次抽到的卡片上的数字之和为偶数的概率为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23、(1)见解析;(2)【分析】(1)首先根据题意列出表格,然后由表格求得所有等可能的结果;(2)由(1)中的列表求得点(x,y)落在反比例函数y=的图象上的情况,再利用概率公式即可求得答案.【详解】(1)列表如下23462(3,2)(4,2)(6,2)3(2,3)(4,3)(6,4)4(2,4)(3,4)(6,4)6(2,6)(3,6)(4,6)则共有12种可能的结果;(2)各取一个小球所确定的点(x,y)落在反比例函数y=的图象上的有(6,2),(4,3),(3,4),(2,6)四种情况,∴点(x,y)落在反比例函数y=的图象上的概率为=.【点睛】本题考查了列表法或树状图法求概率,反比例函数图象上点的坐标特征.用到的知识点为:概率=所求情况数与总情况数之比.24、(1)见解析;(2)(0,1),(﹣3,1);(3)(0,﹣1),(3,﹣5),(3,﹣1).【分析】(1)利用网格特点和旋转的性质画出B、C的对应点B1、C1即可;(2)利用B点坐标画出直角坐标系,然后写出A、C的坐标;(3)利用关于原点对称的点的坐标特征写出点A2、B2、C2的坐标,然后描点即可.【详解】解:(1)如图,△AB1C1为所作;(2)如图,A点坐标为(0,1),C点的坐标为(﹣3,1);(3)如图,△A2B2C2为所作,点A2、B2、C2的坐标烦恼为(0,﹣1),(3,﹣5),(3,﹣1).【点睛】本题考查的是平面直角坐标系,需要熟练掌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030物联网行业发展趋势当前供需讨论及房产评估发展计划布局研究报告
- 2025-2030物联网智能家居行业市场发展状态交易需求前景评论计划执行分析总结报告
- 2025-2030物联网技术应用在制造业设备预测性维护与节能研究
- 2025-2030物联网平台服务行业现状分析及未来发展路径规划分析研究报告
- 2025-2030物流仓储行业运营现状调研投资趋势与规划分析
- 2025-2030物流业运输市场经济投资政策需求供应规模经济评估分析报告
- 餐饮供应链风险管理与对策分析-洞察及研究
- 纳米技术在肺损伤修复与再生中的研究进展-洞察及研究
- 草原退化与全球气候变化的相互作用-洞察及研究
- 老龄化血压与肌肉活力-洞察及研究
- 鹤壁供热管理办法
- 01 华为采购管理架构(20P)
- 糖尿病逆转与综合管理案例分享
- 工行信息安全管理办法
- 娱乐场所安全管理规定与措施
- 化学●广西卷丨2024年广西普通高中学业水平选择性考试高考化学真题试卷及答案
- 人卫基础护理学第七版试题及答案
- 烟草物流寄递管理制度
- 被打和解协议书范本
- 《糖尿病合并高血压患者管理指南(2025版)》解读
- 养老院敬老院流动资产管理制度
评论
0/150
提交评论