2022年广东省深圳福田区五校联考八年级数学第一学期期末调研模拟试题含解析_第1页
2022年广东省深圳福田区五校联考八年级数学第一学期期末调研模拟试题含解析_第2页
2022年广东省深圳福田区五校联考八年级数学第一学期期末调研模拟试题含解析_第3页
2022年广东省深圳福田区五校联考八年级数学第一学期期末调研模拟试题含解析_第4页
2022年广东省深圳福田区五校联考八年级数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列交通标志,不是轴对称图形的是()A. B. C. D.2.如图,点A,D,C,F在一条直线上,AB=DE,∠A=∠EDF,下列条件不能判定△ABC≌△DEF的是()A.AD=CF B.∠BCA=∠F C.∠B=∠E D.BC=EF3.已知5,则分式的值为()A.1 B.5 C. D.4.已知图中的两个三角形全等,则等于()A. B. C. D.5.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行6.如图,为了弘扬中华民族的传统文化,我校开展了全体师生学习“弟子规”活动.对此学生会就本校“弟子规学习的重要性”对1000名学生进行了调查,将得到的数据经统计后绘制成如图所示的扇形统计图,可知认为“很重要”的人数是()A.110 B.290 C.400 D.6007.下列各数中,()是无理数.A.1 B.-2 C. D.1.48.已知一个等腰三角形底边的长为5cm,一腰上的中线把其周长分成的两部分的差为3cm,则腰长为()A.2cm B.8cm C.2cm或8cm D.10cm9.如图①,从边长为的正方形中剪去一个边长为的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是()A. B.C. D.10.如图所示,有一条线段是()的中线,该线段是().A.线段GH B.线段AD C.线段AE D.线段AF11.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC12.如图所示,三角形ABC的面积为1cm1.AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是()A.B.C.D.二、填空题(每题4分,共24分)13.某学校八年级班学生准备在植树节义务植树棵,原计划每小时植树棵,实际每小时植树的棵数是原计划的倍,那么实际比原计划提前了__________小时完成任务.(用含的代数式表示).14.若y=1是方程+=的增根,则m=____.15.的相反数是__________.16.如图所示,一根长为7cm的吸管放在一个圆柱形杯中,测得杯的内部底面直径为3cm,高为4cm,则吸管露出在杯外面的最短长度为_____cm.17.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=_____°.18.若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.三、解答题(共78分)19.(8分)在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;(2)设,.①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论.20.(8分)如图①是一个长为,宽为的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图②形状拼成一个正方形.(1)若,.求图②中阴影部分面积;(2)观察图②,写出,,三个代数式之间的等量关系.(简要写出推理过程)(3)根据(2)题的等量关系,完成下列问题:若,,求的值.21.(8分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)在图中画出关于轴对称的;(2)通过平移,使移动到原点的位置,画出平移后的.(3)在中有一点,则经过以上两次变换后点的对应点的坐标为.22.(10分)阅读下列材料,然后回答问题:阅读:在进行二次根式的化简与运算时,可以将进一步化简:方法一:方法二:(探究)选择恰当的方法计算下列各式:(1);(2).(猜想)=.23.(10分)已知△ABC中,AD是∠BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.(1)如图1,若∠BAC=60°.①直接写出∠B和∠ACB的度数;②若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.24.(10分)(1)计算:;(2)先化简,再求值:,其中,.25.(12分)解方程:(1)计算:(2)计算:(3)解方程组:26.用无刻度直尺作图并解答问题:如图,和都是等边三角形,在内部做一点,使得,并给予证明.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【详解】根据轴对称图形的意义可知:A选项:是轴对称图形;B选项:是轴对称图形;C选项:不是轴对称图形;D选项:是轴对称图形;故选:C.【点睛】考查了轴对称图形的意义,解题关键利用了:判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.2、D【解析】根据全等三角形的判定方法分别进行分析即可.【详解】AD=CF,可用SAS证明△ABC≌△DEF,故A选项不符合题意,∠BCA=∠F,可用AAS证明△ABC≌△DEF,故B选项不符合题意,∠B=∠E,可用ASA证明△ABC≌△DEF,故C选项不符合题意,BC=EF,不能证明△ABC≌△DEF,故D选项符合题意,故选D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.但是AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、A【分析】由5,得x﹣y=﹣5xy,进而代入求值,即可.【详解】∵5,∴5,即x﹣y=﹣5xy,∴原式1,故选:A.【点睛】本题主要考查分式的求值,掌握等式的基本性质以及分式的约分,是解题的关键.4、C【分析】根据全等三角形的对应边相等和全等三角形的对应角相等,可得第二个三角形没有标注的边为a,且a和c的夹角为70°,利用三角形的内角和定理即可求出∠1.【详解】解:∵两个三角形全等,∴第二个三角形没有标注的边为a,且a和c的夹角为70°∴∠1=180°-70°-50°=60°故选C.【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等和全等三角形的对应角相等是解决此题的关键.5、B【分析】根据轴对称的性质结合图形分析可得.【详解】解:观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.6、D【分析】利用1000ד很重要”的人数所占的百分率,即可得出结论.【详解】解:1000×(1-11%-29%)=600故选D.【点睛】此题考查的是扇形统计图,掌握百分率和部分量的求法是解决此题的关键.7、C【解析】根据无理数的定义:无理数,也称为无限不循环小数,不能写作两整数之比,逐一判定即可.【详解】A选项,1是有理数,不符合题意;B选项,-2是有理数,不符合题意;C选项,是无理数,符合题意;D选项,1.4是有理数,不符合题意;故选:C.【点睛】此题主要考查对无理数的理解,熟练掌握,即可解题.8、B【详解】解:如图,∵BD是△ABC的中线,

∴AD=CD,

∴两三角形的周长的差等于腰长与底边的差,

∵BC=5cm,

∴AB-5=3或5-AB=3,

解得AB=8或AB=2,

若AB=8,则三角形的三边分别为8cm、8cm、5cm,

能组成三角形,

若AB=2,则三角形的三边分别为2cm、2cm、5cm,

∵2+2=4<5,

∴不能组成三角形,

综上所述,三角形的腰长为8cm.

故选:B.故选B.9、A【分析】由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.【详解】由大正方形的面积-小正方形的面积=矩形的面积得故答案为:A.【点睛】本题考查了平方差公式的证明,根据题意列出方程得出平方差公式是解题的关键.10、B【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.11、B【解析】试题分析:∵AE=CF,∴AE+EF=CF+EF.∴AF=CE.A.∵在△ADF和△CBE中,,∴△ADF≌△CBE(ASA),正确,故本选项错误.B.根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确.C.∵在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),正确,故本选项错误.D.∵AD∥BC,∴∠A=∠C.由A选项可知,△ADF≌△CBE(ASA),正确,故本选项错误.故选B.12、B【分析】过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【详解】解:过P点作PE⊥BP,垂足为P,交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面积=三角形ABC的面积=cm1,选项中只有B的长方形面积为cm1,故选B.二、填空题(每题4分,共24分)13、【分析】等量关系为:原计划时间-实际用时=提前的时间,根据等量关系列式.【详解】由题意知,原计划需要小时,实际需要小时,

故提前的时间为,

则实际比原计划提前了小时完成任务.故答案为:.【点睛】本题考查了列分式,找到等量关系是解决问题的关键,本题还考查了工作时间=工作总量÷工效这个等量关系.14、-1.【解析】增根是化为整式方程后产生的不适合分式方程的根.先去分母,然后把y=1代入代入整式方程,即可算出m的值.【详解】去分母,可得m(y-2)+3(y-1)=1,把y=1代入,可得m(1-2)+3(1-1)=1,解得m=-1,故答案为-1.【点睛】本题考查了分式方程的增根,在分式方程变形时,有可能产生不适合原方程的根,即代入分式方程后分母的值为0或是转化后的整式方程的根恰好是原方程未知数的允许值之外的值的根,叫做原方程的增根.15、-【分析】只有符号不同的两个数,我们称这两个数互为相反数.【详解】解:的相反数为-.故答案为:-.【点睛】本题主要考查的是相反数的定义,属于基础题型.解决这个问题只要明确相反数的定义即可.16、1【分析】吸管露出杯口外的长度最少,即在杯内最长,可构造直角三角形用勾股定理解答.【详解】解:设在杯里部分长为xcm,则有:x1=31+41,解得:x=5,所以露在外面最短的长度为7cm﹣5cm=1cm,故吸管露出杯口外的最短长度是1cm,故答案为:1.【点睛】本题考查了勾股定理的实际应用,熟练掌握勾股定理,并在实际问题中构造直角三角形是解答的关键.17、35【解析】由全等三角形的性质知:对应角∠CAB=∠EAD相等,求出∠CAB=∠EAD,待入求出即可.

解:∵△ABC≌△ADE,

∴∠CAB=∠EAD,

∵∠EAC=∠CAB-∠EAB,∠BAD=∠EAD-∠EAB,

∴∠BAD=∠EAC,

∴∠BAD=∠EAC=35°.

故答案为:35.18、八【解析】360°÷(180°-135°)=8三、解答题(共78分)19、90°【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB=45°,即可解决问题;(2)①证明△BAD≌△CAE,得到∠B=∠ACE,β=∠B+∠ACB,即可解决问题;②证明△BAD≌△CAE,得到∠ABD=∠ACE,借助三角形外角性质即可解决问题.【详解】(1);(2)①.理由:∵,∴.即.又,∴.∴.∴.∴.∵,∴.②当点在射线上时,.当点在射线的反向延长线上时,.【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点.20、(1);(2)或,过程见解析;(3)【分析】(1)根据图形可知,阴影正方形的边长为小长方形的长与宽的差,写出即可求解;(2)根据完全平方公式的变形即可得到关系式;(3)根据,故求出,代入(2)中的公式即可求解.【详解】解:(1)∵阴影正方形的边长为小长方形的长与宽的差,即阴影正方形的边长为13-3=10∴;(2)结论:或∵,∴∴或;(3)∵,∴∴由(2)可知∴∵,∴.【点睛】本题考查了完全平方公式的几何背景,以及两个公式之间的关系,从整体与局部两种情况分析并写出面积的表达式是解题的关键.21、(1)图见解析;(2)图见解析;(3)【分析】(1)先分别找到A、B、C关于x轴的对称点,然后连接、、即可;(2)先判断移动到原点的位置时的平移规律,然后分别将、按此规律平移,得到、,连接、、即可;(3)根据关于x轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可得到,然后根据(2)中的平移规律即可得到的坐标.【详解】解:(1)先分别找到A、B、C关于x轴的对称点,然后连接、、,如下图所示:即为所求(2)∵∴∴到点O(0,0)的平移规律为:先向左平移4个单位,再向上平移2个单位分别将、按此规律平移,得到、,连接、、,如图所示,即为所求;(3)由(1)可知,经过第一次变化后为然后根据(2)的平移规律,经过第二次变化后为故答案为:.【点睛】此题考查的是画已知图形关于x轴对称的图形、平移后的图形、点的对称规律和平移规律,掌握关于x轴对称图形画法、平移后的图形画法、关于x轴对称两点坐标规律和坐标的平移规律是解决此题的关键.22、(1)(2)(3).【分析】(1)利用分母有理化计算;(2)先分别分母有理化,然后合并即可;(3)猜想部分与(2)计算一样,利用规律即可求解.【详解】(1)(2)==(3)猜想:原式====.故答案为.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23、(1)①45°,②;(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC.证明见解析.【分析】(1)①先根据角平分线的定义可得∠BAD=∠CAD=30°,由等腰三角形的性质得∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图1,作高线DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的长;(2)如图2,延长AB和CH交于点F,取BF的中点G,连接GH,易证△ACH≌△AFH,则AC=AF,HC=HF,根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论.【详解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如图1,过D作DE⊥AC交AC于点E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC.证明:如图2,延长AB和CH交于点F,取BF的中点G,连接GH.易证△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【点睛】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论