2022年广西防城港市防城区数学八年级第一学期期末监测试题含解析_第1页
2022年广西防城港市防城区数学八年级第一学期期末监测试题含解析_第2页
2022年广西防城港市防城区数学八年级第一学期期末监测试题含解析_第3页
2022年广西防城港市防城区数学八年级第一学期期末监测试题含解析_第4页
2022年广西防城港市防城区数学八年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知为正整数,也是正整数,那么满足条件的的最小值是()A.3 B.12 C.2 D.1922.下列命题中,真命题是()A.同旁内角互补 B.在同一平面内,垂直于同一条直线的两条直线平行C.相等的角是内错角 D.有一个角是的三角形是等边三角形3.已知三角形的两边长分别为3cm和8cm,则这个三角形的第三边的长可能是(

)A.4cm

B.5cm

C.6cm

D.13cm4.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.2+ B. C. D.35.若x没有平方根,则x的取值范围为()A.x为负数 B.x为0 C.x为正数 D.不能确定6.下列因式分解正确的是()A.x2+2x+1=x(x+2)+1 B.(x2-4)x=x3-4x C.ax+bx=(a+b)x D.m2-2mn+n2=(m+n)27.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分8.下列几个数中,属于无理数的数是()A. B. C.0.101001 D.9.已知,求作射线,使平分作法的合理顺序是()①作射线,②在和上分别截取,,使,③分别以,为圆心,大于的长为半径作弧,内,两弧交于.A.①②③ B.②①③ C.②③① D.③②①10.已知,则的值是()A.18 B.16 C.14 D.12二、填空题(每小题3分,共24分)11.如图,已知,AB=BC,点D是射线AE上的一动点,当BD+CD最短时,的度数是_________.12.请写出一个小于4的无理数:________.13.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒.(1)当t=_____.时,线段AP是∠CAB的平分线;(2)当t=_____时,△ACP是以AC为腰的等腰三角形.14.若是正整数,则满足条件的的最小正整数值为__________.15.因式分解:=.16.若一个正方形的面积为,则此正方形的周长为___________.17.若,则=_____.18.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C=______.三、解答题(共66分)19.(10分)已知:如图,在中,,BE、CD是中线求证:.20.(6分)如图,AB∥CD,△EFG的顶点E,F分别落在直线AB,CD上,FG平分∠CFE交AB于点H.若∠GEF=70°,∠G=45°,求∠AEG的度数21.(6分)计算题(1)(2)22.(8分)在平面直角坐标系xOy中,点A(t﹣1,1)与点B关于过点(t,0)且垂直于x轴的直线对称.(1)以AB为底边作等腰三角形ABC,①当t=2时,点B的坐标为;②当t=0.5且直线AC经过原点O时,点C与x轴的距离为;③若上所有点到y轴的距离都不小于1,则t的取值范围是.(2)以AB为斜边作等腰直角三角形ABD,直线m过点(0,b)且与x轴平行,若直线m上存在点P,上存在点K,满足PK=1,直接写出b的取值范围.23.(8分)某超市在2017年“双11”,销售一批用16800元购进的中老年人保暖内衣,发现供不应求.为了备战“双12”,积极参与支付宝扫码领红包活动,超市又用36400元购进了第二批这种保暖内衣,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该超市购进的第一批保暖内衣是多少件?(2)两批保暖内衣按相同的标价销售,最后剩下的50件按六折优惠卖出,两批保暖内衣全部售完后利润没有低于进价的20%(不考虑其他因素),请计算每件保暖内衣的标价至少是多少元?24.(8分)某校为实施国家“营养午餐”工程,食堂用甲、乙两种原料配制成某种营养食品,已知这两种原料的维生素C含量及购买这两种原料的价格如表:原料维生素C含量及价格甲种原料乙种原料维生素C含量(单位/千克)12080原料价格(元/价格)95现要配制这种营养食品20千克,设购买甲种原料x千克(),购买这两种原料的总费用为y元.(1)求y与x的函数关系式;(2)已知相关部门规定营养食品中含有维生素C的标准为每千克不低于95单位,试说明在食堂购买甲、乙两种原料总费用最少的情况下,能否达到规定的标准?25.(10分)已知:如图1,OM是∠AOB的平分线,点C在OM上,OC=5,且点C到OA的距离为1.过点C作CD⊥OA,CE⊥OB,垂足分别为D、E,易得到结论:OD+OE=_________;(1)把图1中的∠DCE绕点C旋转,当CD与OA不垂直时(如图2),上述结论是否成立?并说明理由;(2)把图1中的∠DCE绕点C旋转,当CD与OA的反向延长线相交于点D时:①请在图1中画出图形;②上述结论还成立吗?若成立,请给出证明;若不成立,请直接写出线段OD、OE之间的数量关系,不需证明.26.(10分)如图,点在上,,.求证:.

参考答案一、选择题(每小题3分,共30分)1、A【分析】因为是正整数,且==,因为是整数,则1n是完全平方数,可得n的最小值.【详解】解:∵是正整数,则==,是正整数,∴1n是完全平方数,满足条件的最小正整数n为1.故选A.【点睛】此题主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则,解题关键是分解成一个完全平方数和一个代数式的积的形式.2、B【分析】分别根据平行线的性质和判定、内错角的定义和等边三角形的判定方法逐项判断即可得出答案.【详解】解:A、同旁内角互补是假命题,只有在两直线平行的前提下才成立,所以本选项不符合题意;B、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,所以本选项符合题意;C、相等的角是内错角,是假命题,所以本选项不符合题意;D、有一个角是的三角形是等边三角形,是假命题,应该是有一个角是的等腰三角形是等边三角形,所以本选项不符合题意.故选:B.【点睛】本题考查了真假命题的判断、平行线的性质和判定以及等边三角形的判定等知识,属于基本题型,熟练掌握基本知识是解题的关键.3、C【详解】根据三角形两边之和大于第三边,两边之差小于第三边,可知第三边应大于5且小于11,故选C4、A【分析】如图,过点D作DF⊥AC于F,由角平分线的性质可得DF=DE=1,在Rt△BED中,根据30度角所对直角边等于斜边一半可得BD长,在Rt△CDF中,由∠C=45°,可知△CDF为等腰直角三角形,利用勾股定理可求得CD的长,继而由BC=BD+CD即可求得答案.【详解】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CF=DF=1,∴CD==,∴BC=BD+CD=,故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.5、A【分析】根据平方根的定义即可求出答案,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.【详解】解:∵负数没有平方根,∴若x没有平方根,则x的取值范围为负数.故选:A.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根.6、C【分析】直接利用因式分解法的定义以及提取公因式法和公式法分解因式得出即可.【详解】解:A、x2+2x+1=x(x+2)+1,不是因式分解,故此选项错误;B、(x2﹣4)x=x3﹣4x,不是因式分解,故此选项错误;C、ax+bx=(a+b)x,是因式分解,故此选项正确;D、m2﹣2mn+n2=(m﹣n)2,故此选项错误.故选C.【点睛】此题主要考查了提取公因式法和公式法分解因式等知识,正确把握因式分解的方法是解题关键.7、C【解析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【详解】解:由于总人数为7+12+10+8+3=40人,所以中位数为第20、21个数据平均数,即中位数为=80(分),因为70分出现次数最多,所以众数为70分,故选C.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8、D【解析】根据无理数是无限不循环小数,或者开不尽方的数,逐一进行判断即可.【详解】解:A.=2是有理数,不合题意;

B.=-2是有理数,不合题意;

C.0.101001是有理数,不合题意;

D.是无理数,符合题意.

故选D.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,或者无限不循环小数为无理数.9、C【分析】根据角平分线的作法排序即可得到答案.【详解】解:角平分线的作法是:在和上分别截取,,使,分别以为圆心,大于的长为半径作弧,在内,两弧交于,作射线,故其顺序为②③①.故选:C.【点睛】本题考查尺规作图-角平分线,掌握角平分线的作图依据是解题的关键.10、A【分析】根据完全平方公式可得,然后变形可得答案.【详解】∵∴∴故选:A.【点睛】此题主要考查了完全平方公式,关键是掌握完全平方公式:.二、填空题(每小题3分,共24分)11、【分析】作CO⊥AE于点O,并延长CO,使,通过含30°直角三角形的性质可知是等边三角形,又因为AB=BC,根据等腰三角形三线合一即可得出,则答案可求.【详解】作CO⊥AE于点O,并延长CO,使,则AE是的垂直平分线,此时BD+CD最短∴是等边三角形∵AB=BC故答案为:90°.【点睛】本题主要考查含30°直角三角形的性质及等腰三角形三线合一,掌握含30°直角三角形的性质及等腰三角形三线合一是解题的关键.12、答案不唯一如,等【分析】开放性的命题,答案不唯一,写出一个小于4的无理数即可.【详解】开放性的命题,答案不唯一,如等.故答案为不唯一,如等.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.13、s,3或s或6s【分析】(1)过P作PE⊥AB于E,根据角平分线的性质可得PE=CP=2t,AE=AC=6,进而求得BE、BP,再根据勾股定理列方程即可解答;(2)根据题意分AC=CP、AC=AP情况进行讨论求解.【详解】(1)在△ABC中,∵∠ACB=90°,AC=6cm,BC=8cm,∴AB=10cm,如图,过P作PE⊥AB于E,∵线段AP是∠CAB的平分线,∠ACB=90°,∴PE=CP=2t,AE=AC=6cm,∴BP=(8-2t)cm,BE=10-6=4cm,在Rt△PEB中,由勾股定理得:,解得:t=,故答案为:s;(2)∵△ACP是以AC为腰的等腰三角形,∴分下列情况讨论,当AC=CP=6时,如图1,t==3s;当AC=CP=6时,如图2,过C作CM⊥AB于M,则AM=PM,CM=,∵AP=10+8-2t=18-2t,∴AM=AP=9-t,在Rt△AMC中,由勾股定理得:,解得:t=s或t=s,∵0﹤2t﹤8+10=18,∴0﹤t﹤9,∴t=s;当AC=AP=6时,如图3,PB=10-6=4,t==6s,故答案为:3s或s或6s.【点睛】本题考查了角平分线的性质、等腰三角形的判定与性质、勾股定理,难度适中,熟练掌握角平分线的性质,利用分类讨论的思想是解答的关键,14、1【分析】先化简,然后依据也是正整数可得到问题的答案.【详解】解:==,∵是正整数,∴1n为完全平方数,

∴n的最小值是1.故答案为:1.【点睛】本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键.15、.【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式a后继续应用平方差公式分解即可:.16、【分析】由正方形的面积是边长的平方,把分解因式得边长,从而可得答案.【详解】解:正方形的边长是:正方形的周长是:故答案为:【点睛】本题考查的是因式分解,掌握利用完全平方式分解因式是解题关键.17、【解析】通过设k法计算即可.【详解】解:∵,∴设a=2k,b=3k(k≠0),则,故答案为:.【点睛】本题考查比例的性质,比较基础,注意设k法的使用.18、35°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【详解】∵△ABD中,AB=AD,∠B=70°,

∴∠B=∠ADB=70°,

∴∠ADC=180°﹣∠ADB=110°,

∵AD=CD,

∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°.【点睛】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.三、解答题(共66分)19、见解析【解析】由中线性质得,,再证,由,得≌,可证.【详解】证明:∵、是中线,∴,,∵,∴,在和中,,∴≌,∴.【点睛】本题考核知识点:全等三角形.解题关键点:灵活运用全等三角形判定和性质证线段相等.20、20°【分析】由三角形内角和定理,求出,由角平分线和平行线的性质,得到∠BHF=65°,由三角形的外角性质,即可得到∠AEG.【详解】解:∵∵平分∵是的外角,【点睛】本题考查了三角形内角和定理,角平分线的定义,平行线的性质,以及三角形的外角性质,解题的关键是熟练掌握所学的知识,正确得到角的关系.21、(1)11;(2)【分析】(1)原式利用完全平方公式展开,合并即可得到答案;(2)原式利用多项式除以单项式法则计算即可得到结果.【详解】(1)(2)原式【点睛】本题主要考查了二次根式的混合运算,正确化简二次根式是解题的关键.22、(1)①(3,1);②1;③或;(2)当点D在AB上方时,若直线m上存在点P,上存在点K,满足PK=1,则;当点D在AB下方时,若直线m上存在点P,上存在点K,满足PK=1,则.或【分析】(1)①根据A,B关于直线x=2对称解决问题即可.②求出直线OA与直线x=0.5的交点C的坐标即可判断.③由题意,根据△ABC上所有点到y轴的距离都不小于1,构建不等式即可解决问题.(2)由题意AB=,由△ABD是以AB为斜边的等腰直角三角形,推出点D到AB的距离为1,分两种情形分别求解即可解决问题.【详解】解:(1)①如图1中,当A(1,1),A,B关于直线x=2对称,∴B(3,1).故答案为(3,1).②如图2中,当A(﹣0.5,1),,直线l:x=0.5,设为,在上,直线AC的解析式为y=﹣2x,∴C(0.5,﹣1),∴点C到x轴的距离为1,故答案为1.③由题意,∵上所有点到y轴的距离都不小于1,∴t﹣1≥1或t+1≤﹣1,解得或.故答案为:或.(2)如图3中,∵,∴AB=∵是以AB为斜边的等腰直角三角形,∴点D到AB的距离为1,∴当点D在AB上方时,若直线m上存在点P,上存在点K,满足PK=1,则.当点D在AB下方时,若直线m上存在点P,上存在点K,满足PK=1,则.综上:的取值范围是:【点睛】本题属于一次函数综合题,考查了一次函数的性质,轴对称,等腰三角形的性质等知识,解题的关键是理解题意,学会利用参数根据不等式解决问题.23、(1)该超市购进的第一批保暖内衣是1件;(2)每件保暖内衣的标价至少是159.2元【分析】(1)根据“所购数量是第一批购进量的2倍,但单价贵了10元”,建立方程求解,即可得出结论;(2)根据“两批保暖内衣全部售完后利润没有低于进价的20%”,建立不等式求解,即可得出结论.【详解】解:(1)设该商家购进的第一批保暖内衣是x件.根据题意,得解方程,得x=1.经检验,x=1是原方程的解,且符合题意.答:该超市购进的第一批保暖内衣是1件.(2)根据题意可知两次一共购进保暖内衣为3x=3×1=420(件).设每件保暖内衣的标价y元.根据题意,得(420﹣50)y+50×0.2y≥(12800+32400)×(1+20%).解不等式,得y≥159.2.答:每件保暖内衣的标价至少是159.2元.【点睛】本题主要考查了分式方程的应用及不等式的应用,根据题意列出相应的分式方程及不等式是解题的关键.24、(1)y=4x+100;(2)当x=8时,y有最小值,符合标准.【分析】(1)根据题意列出一次函数的解析式即可;

(2)根据表中所给的数据列出式子,再根据k的值,即可得出购买甲种原料多少千克时,总费用最少,并判断是否符合标准.【详解】解:(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论