




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.在函数中,自变量的取值范围是()A. B. C. D.且2.在平面直角坐标系中,若点P(m+3,-2m)到两坐标轴的距离相等,则m的值为()A.-1 B.3 C.-1或3 D.-1或53.如图,在△ABC中,,∠D的度数是()A. B. C. D.4.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C.D5.在下列交通标识图案中,不是轴对称图形的是()A. B. C. D.6.已知a、b、c是的三条边,且满足,则是()A.锐角三角形 B.钝角三角形C.等腰三角形 D.等边三角形7.下列图形是中心对称图形的是()A. B.C. D.8.如图是两个全等三角形,图中字母表示三角形的边长,则的度数为()A. B. C. D.9.如图,在△ABC中,∠C=63°,AD是BC边上的高,AD=BD,点E在AC上,BE交AD于点F,BF=AC,则∠AFB的度数为().A.27° B.37° C.63° D.117°10.下列各式中,属于同类二次根式的是()A.与 B.与 C.与 D.与11.在-1,,0,四个数中,最小的数是()A.-1 B. C.0 D.12.如图,已知为等腰三角形,,将沿翻折至为的中点,为的中点,线段交于点,若,则()A. B. C. D.二、填空题(每题4分,共24分)13.已知直线:与直线:在同一坐标系中的图象交于点,那么方程组的解是______.14.如图所示,在Rt△ABC中,∠A=30°,∠B=90°,AB=12,D是斜边AC的中点,P是AB上一动点,则PC+PD的最小值为_____.15.若是一个完全平方式,则k=_______.16.已知点的坐标为,点的坐标为,且点与点关于轴对称,则________.17.一组数据1、6、4、6、3,它的平均数是_______,众数是_______,中位数是_______.18.图中x的值为________三、解答题(共78分)19.(8分)已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=,BC=1.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.20.(8分)先化简,再求值:÷(a﹣1﹣),其中a=﹣1.21.(8分)如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为.(1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知为优三角形,,,,①如图1,若,,,求的值.②如图2,若,求优比的取值范围.(3)已知是优三角形,且,,求的面积.22.(10分)方程与分解因式(1)解方程:;(2)分解因式:.23.(10分)已知:如图,把向上平移个单位长度,再向右平移个单位长度,得到;(1)写出的坐标;(2)求出的面积;(3)点在轴上,且与的面积相等,求点的坐标.24.(10分)四边形ABCD中,AD=CD,AB=CB,我们把这种两组邻边分别相等的四边形叫做“筝形”.“筝形”是一种特殊的四边形,它除了具有两组邻边分别相等的性质外,猜想它还有哪些性质?然后证明你的猜想.(以所给图形为例,至少写出三种猜想结果,用文字和字母表示均可,并选择猜想中的其中一个结论进行证明)25.(12分)已知y是x的一次函数,当时,;当时,,求:(1)这个一次函数的表达式和自变量x的取值范围(2)当时,自变量x的值(3)当时,自变量x的取值范围.26.如图,一次函数y=x+2的图象与x轴和y轴分别交于点A和B,直线y=kx+b经过点B与点C(2,0).(1)点A的坐标为;点B的坐标为;(2)求直线y=kx+b的表达式;(3)在x轴上有一动点M(t,0),过点M做x轴的垂线与直线y=x+2交于点E,与直线y=kx+b交于点F,若EF=OB,求t的值.(4)当点M(t,0)在x轴上移动时,是否存在t的值使得△CEF是直角三角形?若存在,直接写出t的值;若不存在,直接答不存在.
参考答案一、选择题(每题4分,共48分)1、D【分析】二次根号下的数为非负数,二次根式有意义;分式的分母不为0,分式有意义.【详解】解:由题意得,解得故选D.【点睛】本题考查二次根式、分式有意义的条件,本题属于基础应用题,只需学生熟练掌握二次根式、分式有意义的条件,即可完成.2、C【分析】根据到坐标轴的距离相等,分横坐标与纵坐标相等和互为相反数两种情况讨论解答.【详解】解:∵点P(m+3,-2m)到两坐标轴的距离相等∴m+3+(-2m)=0或m+3=-2m解得m=3或m=-1故选:C【点睛】本题考查了点的坐标,难点在于要分两种情况讨论,熟记各象限内点的坐标特征是解题的关键.3、B【分析】先根据角的和差、三角形的内角和定理求出的度数,再根据三角形的内角和定理即可.【详解】由三角形的内角和定理得再由三角形的内角和定理得则故选:B.【点睛】本题考查了角的和差、三角形的内角和定理,熟记三角形的内角和定理是解题关键.4、D【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选:D.5、D【分析】根据轴对称图形的概念对各个选项进行判断即可.【详解】A、B、C中的图案是轴对称图形,D中的图案不是轴对称图形,故选:D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线(成轴)对称.6、C【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.【详解】已知等式变形得:(a+b)(a-b)-c(a-b)=0,即(a-b)(a+b-c)=0,∵a+b-c≠0,∴a-b=0,即a=b,则△ABC为等腰三角形.故选C.【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.7、B【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】解:A、不是中心对称图形,不符合题意,故选项A错误;B、是中心对称图形,符合题意,故选项B正确;C、不是中心对称图形,不符合题意,故选项C错误;D、不是中心对称图形,符合题意,故选项D错误;故选B.【点睛】本题主要考查了中心对称图形的概念,掌握中心对称图形的概念是解题的关键.8、C【分析】根据三角形全等的性质可知,两个三角形全等,对应角相等,由三角形内角和减去已知角度即可得所求角度数.【详解】图为两个全等的三角形,所以对应角相等,,故选:C.【点睛】考查全等三角形的性质和三角形内角和,熟记全等的性质是做题关键,注意对应边所对的角为对应角,边角关系要找到对应的.9、D【分析】利用HL证出RtBDF≌RtADC,从而得出∠BFD=∠C=63°,再根据平角的定义即可求出结论.【详解】解:∵AD是BC边上的高,∴∠BDF=∠ADC=90°在RtBDF和RtADC中∴RtBDF≌RtADC∴∠BFD=∠C=63°∴∠AFB=180°-∠BFD=117°故选D.【点睛】此题考查的是全等三角形的判定及性质,掌握利用HL判定两个三角形全等是解决此题的关键.10、C【分析】化简各选项后根据同类二次根式的定义判断.【详解】A、与的被开方数不同,所以它们不是同类二次根式;故本选项错误;B、与的被开方数不同,所以它们不是同类二次根式;故本选项错误;C、与的被开方数相同,所以它们是同类二次根式;故本选项正确;D、是三次根式;故本选项错误.故选:C.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.11、B【分析】根据正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小,即可判断.【详解】在-1,,0,四个数中,最小的数是.故选B.【点睛】本题考查了实数的大小比较,熟练掌握正数、0、负数的大小关系是解题的关键.12、D【分析】连接,由三角形的中线将三角形面积分成相等的两部分,用m表示出△AEG的面积,再由等高三角形面积比等于底边之比求解即可.【详解】解:如图,连接,设,则,∵为的中点,,∴故选:D.【点睛】本题主要考查了与三角形中线有关的面积问题,掌握三角形的中线将三角形面积分成相等的两部分是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据两个一次函数组成的方程组的解就是两函数图象的交点可得答案.【详解】解:直线:与直线:在同一坐标系中的图象交于点,方程组的解是,故答案为.【点睛】此题主要考查了一次函数与二元一次方程组的关系,关键是掌握凡是函数图象经过的点必能满足解析式.14、12【分析】作C关于AB的对称点E,连接ED,易求∠ACE=60°,则AC=AE,且△ACE为等边三角形,CP+PD=DP+PE为E与直线AC之间的连接线段,其最小值为E到AC的距离=AB=12,所以最小值为12.【详解】作C关于AB的对称点E,连接ED,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵AC=AE,∴△ACE为等边三角形,∴CP+PD=DP+PE为E与直线AC之间的连接线段,∴最小值为C'到AC的距离=AB=12,故答案为12【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.15、±1.【解析】试题分析:∵多项式是一个完全平方式,∴.故答案为±1.考点:完全平方式.16、1【分析】根据点与点关于轴对称,求出m和n的值即可.【详解】∵点与点关于轴对称,∴A,B两点的横坐标不变,纵坐标变成相反数,∴,∴,故答案为:1.【点睛】本题是对坐标系中点对称的考查,熟练掌握点关于对称轴的变化规律是解决本题的关键.17、161【分析】根据平均数的计算公式、众数和中位数的定义即可得.【详解】平均数为,因为这组数据中,6出现的次数最多,所以它的众数是6,将这组数据按从小到大进行排序为,则它的中位数是1,故答案为:1,6,1.【点睛】本题考查了平均数、众数、中位数,熟记公式和定义是解题关键.18、1【分析】根据多边形内角和定理求解即可.【详解】根据多边形内角和定理可得,该五边形内角和为540°解得故答案为:1.【点睛】本题考查了多边形内角和的问题,掌握多边形内角和定理是解题的关键.三、解答题(共78分)19、(1)4;(2)2【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;
(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=BF,由(1)证明方法可得△PFD≌△QCD则有CD=,即可得出BE+CD=2.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴△PFD≌△QCD,∴DF=CD=CF,又因P是AB的中点,PF∥AQ,∴F是BC的中点,即FC=BC=2,∴CD=CF=4;(2)为定值.如图②,点P在线段AB上,过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,∵PE⊥BF∴BE=BF∵易得△PFD≌△QCD∴CD=∴【点睛】此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.20、原式==.【分析】先计算括号内的运算,再计算分式的乘除,将a的值代入即可.【详解】解:原式====,当a=﹣1时,原式=【点睛】本题考查了分式的混合运算,掌握分式的运算法则是解题的关键.21、(1)该命题是真命题,理由见解析;(2)①a的值为;②k的取值范围为;(3)的面积为或.【分析】(1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c的值,再根据优三角形的定义列出的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设,先利用直角三角形的性质、勾股定理求出AC、AB的长及面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x的值,即可得出的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a,恰好是第三边a的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①根据优三角形的定义,分以下三种情况:当时,,整理得,此方程没有实数根当时,,解得当时,,解得,不符题意,舍去综上,a的值为;②由题意得:均为正数根据优三角形的定义,分以下三种情况:()当时,则由三角形的三边关系定理得则,解得,即故此时k的取值范围为当时,则由三角形的三边关系定理得则,解得,即故此时k的取值范围为当时,则由三角形的三边关系定理得则,解得,即故此时k的取值范围为综上,k的取值范围为;(3)如图,过点A作,则设是优三角形,分以下三种情况:当时,即,解得则当时,即,解得则当时,即,整理得,此方程没有实数根综上,的面积为或.【点睛】本题考查了等边三角形的性质、直角三角形的性质、勾股定理、三角形的三边关系定理等知识点,理解题中的新定义,正确分多种情况讨论是解题关键.22、(1);(2).【分析】(1)先去分母、去括号、再移项、合并同类项、最后化系数为1,从而得到方程的解.(2)先提取公因式,再对余下的多项式利用完全平方公式进行分解.【详解】解:(1)去分母,x(x-5)+2(x-1)=x(x-1)解得:,经检验是分式方程的解;(2).【点睛】本题考查了解分式方程、提公因式法与公式法分解因式,熟练掌握相关的知识是解题的关键.23、(1)A′(0,4)、B′(-1,1)、C′(3,1);(2)6;(3)P(0,1)或(0,-5).【分析】(1)观察图形可得△ABC的各顶点坐标,继而根据上加下减,左减右加即可得到平移后对应点A′、B′、C′的坐标;即可得到△A′B′C′;(2)直接利用三角形面积公式根据BC以及BC边上的高进行求解即可;(3)由△BCP与△ABC的面积相等可知点P到BC的距离等于点A到BC的距离,据此分情况求解即可.【详解】(1)观察图形可得A(-2,1),B(-3,-2),C(1,-2),因为把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′,所以A′(-2+2,1+3)、B′(-3+2,-2+3)、C′(1+2,-2+3),即A′(0,4)、B′(-1,1)、C′(3,1);(2)S△ABC===6;(3)设P(0,y),∵△BCP与△ABC同底等高,∴|y+2|=3,即y+2=3或y+2=-3,解得y1=1,y2=-5,∴P(0,1)或(0,-5).【点睛】本题考查了图形的平移,三角形的面积,熟练掌握平移的规律“上加下减,左减右加”是解题的关键.24、①筝形具有轴对称性;或△ABD与△CBD关于直线BD对称;②筝形有一组对角相等;或∠DAB=∠DCB;③筝形的对角线互相垂直;或AC⊥BD;④筝形的一条对角线平分另一条对角线;或BD平分AC;⑤筝形的一条对角线平分一组对角;或BD平分∠ADC和∠ABC;详见解析【分析】根据题意,即可写出该图形的性质,然后选择一个进行证明即可.【详解】解:如图:①筝形具有轴对称性;或△ABD与△CBD关于直线BD对称;②筝形有一组对角相等;或∠DAB=∠DCB;③筝形的对角线互相垂直;或AC⊥BD;④筝形的一条对角线平分另一条对角线;或BD平分AC;⑤筝形的一条对角线平分一组对角;或BD平分∠ADC和∠ABC;理由:①AD=CD,AB=CB,BD=BD,∴△ABD≌△CBD;∴△ABD与△CBD关于直线BD对称;②由①△ABD≌△CBD,∴∠DAB=∠DCB;③∵AD=CD,AB=CB,∴点B、点D在线段AC的垂直平分线上,∴A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 雇佣老人用工协议书
- 酒店禁毒责任协议书
- 铁路征地补偿协议书
- 遗产分配分摊协议书
- 装修员工承包协议书
- 青州购房定金协议书
- 被打家属和解协议书
- 阳台护栏免责协议书
- 茶叶委托检测协议书
- 门面放弃财产协议书
- (整理)柴油发电机的检修
- 2021年肇庆市端州区华佗医院医护人员招聘笔试试题及答案解析
- JJG 694-2009 原子吸收分光光度计-(高清现行)
- DB23∕T 482-1998 主要树种树高级立木材积表
- Q∕GDW 12130-2021 敏感用户接入电网电能质量技术规范
- 车间作业安全培训资料培训资料
- 教练技术一阶段讲义(共59页)
- 超声肺功能探测新技术
- 计算机联锁-K5B
- 朗文SuperKids Unit2-2(课堂PPT)
- 卫生事业管理学-人卫出版社第四版4第四章 卫生组织
评论
0/150
提交评论