天津市部分区2022-2023学年数学八年级第一学期期末监测模拟试题含解析_第1页
天津市部分区2022-2023学年数学八年级第一学期期末监测模拟试题含解析_第2页
天津市部分区2022-2023学年数学八年级第一学期期末监测模拟试题含解析_第3页
天津市部分区2022-2023学年数学八年级第一学期期末监测模拟试题含解析_第4页
天津市部分区2022-2023学年数学八年级第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.在中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?()A.9个 B.7个 C.6个 D.5个2.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是15cm2,AB=9cm,BC=6cm,则DE=()cm.A.1 B.2 C.3 D.43.如图,在△ABC中,AB=AC,AD,BE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于CP+EP最小值的是()A.AC B.AD C.BE D.BC4.长度为下列三个数据的三条线段,能组成直角三角形的是()A.1,2,3 B.3,5,7 C.1,,3 D.1,,5.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A. B. C. D.6.已知:将直线沿着轴向下平移2个单位长度后得到直线,则下列关于直线的说法正确的是()A.经过第一、二、四象限 B.与轴交于C.与轴交于 D.随的增大而减小7.如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F,有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D,若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙 B.甲丙乙 C.乙丙甲 D.丙甲乙8.在直角坐标系中,点A(–2,2)与点B关于x轴对称,则点B的坐标为()A.(–2,2) B.(–2,–2) C.(2,–2) D.(2,2)9.某种细菌的半径是0.00000618米,用科学记数法把半径表示为()A.618×10﹣6 B.6.18×10﹣7 C.6.18×106 D.6.18×10﹣610.若一个凸多边形的内角和为720°,则这个多边形的边数为A.4 B.5 C.6 D.711.下面是某次小华的三科考试成绩,他的三科考试成绩的平均分是()学科数学语文英语考试成绩919488A.88 B.90 C.91 D.9212.一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每题4分,共24分)13.如图,长方形ABCD中,AD=8,AB=4,BQ=5,点P在AD边上运动,当为等腰三角形时,AP的长为_____.14.某商店卖水果,数量(千克)与售价(元)之间的关系如下表,(是的一次函数):/(千克)···/(元)···当千克时,售价_______________元15.若是正整数,则满足条件的的最小正整数值为__________.16.点A(,)在轴上,则点A的坐标为______.17.如图,函数和的图像相交于点A(m,3),则不等式的解集为____.18.关于的分式方程的解为负数,则的取值范围是_____.三、解答题(共78分)19.(8分)阅读材料:要把多项式am+an+bm+bn因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(𝑎𝑚+𝑎𝑛)+(𝑏𝑚+𝑏𝑛)=a(𝑚+𝑛)+b(𝑚+𝑛)=(𝑎+𝑏)(𝑚+𝑛),这种因式分解的方法叫做分组分解法.(1)请用上述方法因式分解:x2-y2+x-y(2)已知四个实数a、b、c、d同时满足a2+ac=12k,b2+bc=12k.c2+ac=24k,d2+ad=24k,且a≠b,c≠d,k≠0①求a+b+c的值;②请用含a的代数式分别表示b、c、d20.(8分)我们知道,任意一个正整数都可以进行这样的分解:(是正整数,且),在的所有这种分解中,如果两因数之差的绝对值最小,我们就称是的最佳分解,并规定.例如:18可以分解成,,,因为,所以是18的最佳分解,所以.(1)如果一个正整数是另外一个正整数的平方,我们称正整数是完全平方数.求证:对任意一个完全平方数,总有;(2)如果一个两位正整数,(,为自然数),交换其个位上的数与十位上的数,得到的新数减去原来的两位正整数所得的差为9,那么我们称这个为“求真抱朴数”,求所有的“求真抱朴数”;(3)在(2)所得的“求真抱朴数”中,求的最大值.21.(8分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为________;(2)若每块小长方形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(10分)列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的,求港珠澳大桥的设计时速是多少.23.(10分)(1)先化简,再求值:,其中;(2)解分式方程:.24.(10分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.25.(12分)(1)(2)(3)26.先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=1.

参考答案一、选择题(每题4分,共48分)1、B【分析】先以三个顶点分别为圆心,再以每个顶点所在的较短边为半径画弧,即可确定等腰三角形的第三个顶点;也可以作三边的垂直平分线确定等腰三角形的第三个顶点即得.【详解】解:①如图1,以B为圆心,BC长为半径画弧,交AB于点D,则BCD就是等腰三角形;②如图2,以A为圆心,AC长为半径画弧,交AB于点E,则ACE就是等腰三角形;③如图3,以C为圆心,BC长为半径画弧,交AB于M,交AC于点F,则BCM、BCF是等腰三角形;④如图4,作AC的垂直平分线交AB于点H,则ACH就是等腰三角形;⑤如图5,作AB的垂直平分线交AC于点G,则AGB就是等腰三角形;⑥如图6,作BC的垂直平分线交AB于I,则BCI就是等腰三角形.故选:B.【点睛】本题考查等腰三角形的判定的应用,通过作垂直平分线或者画弧的方法确定相等的边是解题关键.2、B【分析】过D作DF⊥BC于F,由角平分线的性质得DE=DF,根据即可解得DE的长.【详解】过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB于E,∴DF=DE,∵△ABC的面积是15cm2,AB=9cm,BC=6cm,又,∴,解得:DE=2,故选:B.【点睛】本题主要考查角平分线的性质定理、三角形的面积公式,熟练掌握角平分线的性质定理,作出相应的辅助线是解答本题的关键.3、C【分析】如图连接PB,只要证明PB=PC,即可推出PC+PE=PB+PE,由PE+PB≥BE,可得P、B、E共线时,PB+PE的值最小,最小值为BE的长度.【详解】解:如图,连接PB,

∵AB=AC,BD=CD,

∴AD⊥BC,

∴PB=PC,

∴PC+PE=PB+PE,

∵PE+PB≥BE,

∴P、B、E共线时,PB+PE的值最小,最小值为BE的长度,

故选:C.【点睛】本题考查轴对称-最短路线问题,等腰三角形的性质、线段的垂直平分线的性质,解题的关键是灵活运用所学知识解决问题.4、D【分析】根据勾股定理的逆定理逐项判断即可.【详解】由直角三角形的性质知,三边中的最长边为斜边A、,不满足勾股定理的逆定理,此项不符题意B、,不满足勾股定理的逆定理,此项不符题意C、,不满足勾股定理的逆定理,此项不符题意D、,满足勾股定理的逆定理,此项符合题意故选:D.【点睛】本题考查了勾股定理的逆定理的应用,熟记勾股定理的逆定理是解题关键.5、D【分析】等量关系为:鸡的只数+兔的只数=35,2×鸡的只数+4×兔的只数=94,把相关数值代入即可得到所求的方程组.【详解】解:∵鸡有2只脚,兔有4只脚,∴可列方程组为:,故选D.【点睛】本题考查了由实际问题抽象出二元一次方程组.如何列出二元一次方程组的关键点在于从题干中找出等量关系.6、C【分析】根据直线平移的规律得到平移前的直线解析式,再根据一次函数的性质依次判断选项即可得到答案.【详解】∵直线沿着轴向下平移2个单位长度后得到直线,∴原直线解析式为:+2=x+1,∴函数图象经过第一、二、三象限,故A错误,当y=0时,解得x=-1,图象与x轴交点坐标为(-1,0),故B错误;当x=0时,得y=1,图象与y轴交点坐标为(0,1),故C正确;∵k=1>0,∴y随x的增大而增大,故D错误,故选:C.【点睛】此题考查一次函数的性质,函数图象平移的规律,根据图象的平移规律得到函数的解析式是解题的关键.7、B【分析】本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.【详解】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.【点睛】本题考查1.正方形的性质;2.线段的性质:两点之间线段最短;3.比较线段的长短.8、B【解析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:∵点A(-2,2)与点B关于x轴对称,∴点B的坐标为(-2,-2).故选:B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.9、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,n的值由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000118=1.18×10﹣1.故选D.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、C【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.11、C【分析】根据“平均分=总分数÷科目数”计算即可解答.【详解】解:(分),故小华的三科考试成绩平均分式91分;故选:C.【点睛】这个题目考查的是平均数的问题,根据题意正确计算即可.12、C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.二、填空题(每题4分,共24分)13、3或或2或1【分析】根据矩形的性质可得∠A=90°,BC=AD=1,然后根据等腰三角形腰的情况分类讨论,根据勾股定理和垂直平分线等知识即可求解.【详解】解:∵四边形ABCD是矩形,∴∠A=90°,BC=AD=1,分三种情况:①BP=BQ=5时,AP===3;②当PB=PQ时,作PM⊥BC于M,则点P在BQ的垂直平分线时,如图所示:∴AP=BQ=;③当QP=QB=5时,作QE⊥AD于E,如图所示:则四边形ABQE是矩形,∴AE=BQ=5,QE=AB=4,∴PE===3,∴AP=AE﹣PE=5﹣3=2;④当点P和点D重合时,∵CQ=3,CD=4,∴根据勾股定理,PQ=5=BQ,此时AP=AD=1,综上所述,当为等腰三角形时,AP的长为3或或2或1;故答案为:3或或2或1.【点睛】此题考查的是矩形的性质、等腰三角形的性质和勾股定理,掌握矩形的性质、等腰三角形的性质、分类讨论的数学思想和勾股定理是解题关键.14、【分析】根据表格可直接得到数量x(千克)与售价y(元)之间的关系式,然后把代入计算,即可得到答案.【详解】解:根据表格,设一次函数为:,则,解得:,∴;把代入,得:;∴当千克时,售价为22.5元.【点睛】本题考查了一次函数的性质,求一次函数的解析式,解题的关键是熟练掌握待定系数法求一次函数的解析式.15、1【分析】先化简,然后依据也是正整数可得到问题的答案.【详解】解:==,∵是正整数,∴1n为完全平方数,

∴n的最小值是1.故答案为:1.【点睛】本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键.16、(0,-1)【解析】已知点A(3a-1,1-6a)在y轴上,可得3a-1=0,解得,所以3a-1=0,1-6a=-1,即A的坐标为(0,-1).17、x<-1.【分析】由图象可知,在点A的左侧,函数的图像在的图像的上方,即,所以求出点A的坐标后结合图象即可写出不等式的解集.【详解】解:∵和的图像相交于点A(m,3),∴∴∴交点坐标为A(-1,3),

由图象可知,在点A的左侧,函数的图像在的图像的上方,即∴不等式的解集为x<-1.

故答案是:x<-1.【点睛】此题主要考查了一次函数与一元一次不等式的关系,用图象法解不等式的关键是找到y相等时的分界点,观察分界点左右图象的变化趋势,即可求出不等式的解集,重点要掌握利用数形结合的思想.18、m<2【分析】先将分式方程化为整式方程求出解x=m-2,根据原方程的解是负数得到,求出m的取值范围,再由得到,即可得到答案.【详解】,去分母得m-3=x-1,解得x=m-2,∵该分式方程的解是负数,∴,解得m<2,∵,∴,解得,故答案为:m<2.【点睛】此题考查分式方程的解的情况求方程中未知数的取值范围,正确理解题意列得不等式求出未知数的取值范围是解此题的关键.三、解答题(共78分)19、(1)(𝑥−𝑦)(𝑥+𝑦+1);(2)①;②,,【分析】(1)将x2-y2分为一组,x-y分为一组,前一组利用平方差公式化为(x+y)(x-y),再提取公因式即可求解.(2)①已知=12k,可得,将等号左边参照(1)因式分解,即可求解.②由a2+ac=12k,c2+ac=24k可得2(a2+ac)=c2+ac,即可得出c=2a,同理得出,【详解】(1)x2-y2+x-y=(x2-y2)+(x-y)=(x+y)(x-y)+(x-y)=(x-y)(x+y+1)故答案为:(x-y)(x+y+1)(2)①=12k∵∴②∵a2+ac=12k,c2+ac=24k2(a2+ac)=c2+ac∴2a2+ac-c2=0得(2a-c)(a+c)=0∵a2+ac=12k≠0即a(a+c)≠0∴c=2a,a2=4k∵b2+bc=12k∴b2+2ba=3a2则(𝑎−𝑏)(3𝑎+𝑏)=0∵a≠b∴同理可得d2+ad=24k,c2+ac=24kd2+ad=c2+ac(𝑑−𝑐)(𝑎+𝑑+𝑐)=0∵∴∴故答案为:;,,【点睛】本题考查了用提取公因式法、运用公式法、分组分解法进行因式分解.20、(1)见解析;(2)所有的“求真抱朴数”为:12,23,34,45,56,67,78,89;(3).【分析】(1)求出是m的最佳分解,即可证明结论;(2)求出,可得,根据x的取值范围写出所有的“求真抱朴数”即可;(3)求出所有的的值,即可得出答案.【详解】解:(1)∵,∴是m的最佳分解,∴;(2)设交换后的新数为,则,∴,∴,∵,,为自然数,∴所有的“求真抱朴数”为:12,23,34,45,56,67,78,89;(3)∵,,,,,,,,其中最大,∴所得的“求真抱朴数”中,的最大值为.【点睛】本题考查了因式分解的应用,正确理解“最佳分解”、“”以及“求真抱朴数”的定义是解题的关键.21、(1)(m+2n)(2m+n)(2)42cm【解析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)求出m+n的值,然后根据图象由正方形的性质和长方形的性质即可得出结论;【详解】(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为(m+2n)(2m+n);(2)依题意得:2m2+2n2=58,mn=10,∴m2+n2=1.∴(m+n)2=m2+n2+2mn=49,∴m+n=7,∴图中所有裁剪线(虚线部分)长度之和为6m+6n=6(m+n)=6×7=42cm.【点睛】本题主要考查了因式分解的应用、列代数式以及完全平方公式的应用,根据已知图形得出是解题的关键.22、港珠澳大桥的设计时速是每小时100千米.【解析】设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论