2023届北京市北京师范大附属实验中学数学八年级第一学期期末联考模拟试题含解析_第1页
2023届北京市北京师范大附属实验中学数学八年级第一学期期末联考模拟试题含解析_第2页
2023届北京市北京师范大附属实验中学数学八年级第一学期期末联考模拟试题含解析_第3页
2023届北京市北京师范大附属实验中学数学八年级第一学期期末联考模拟试题含解析_第4页
2023届北京市北京师范大附属实验中学数学八年级第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则拼成长方形的面积是()A. B.C.m D.2.如图,在锐角三角形中,,的平分线交于点,、分别是和上的动点,则的最小值是()A.1 B. C.2 D.3.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+24.不等式组的解集在数轴上表示为A. B. C. D.5.下面的计算过程中,从哪一步开始出现错误().A.① B.② C.③ D.④6.如图,,,,则的长度为()A. B. C. D.7.分式方程的解为()A. B. C. D.8.点D在△ABC的边BC上,△ABD和△ACD的面积相等,则AD是()A.中线 B.高线 C.角平分线 D.中垂线9.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.1,1,C.8,12,13 D.、、10.如图汽车标志中不是中心对称图形的是()A. B. C. D.11.如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=1,则AD的长为()A.1.5 B.2 C.3 D.412.下列二次根式是最简二次根式的是()A. B. C. D.以上都不是二、填空题(每题4分,共24分)13.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=____.14.如图,四边形ABCD中,∠A=90°,AB=2,AD=,CD=3,BC=5,则四边形ABCD的面积是______.15.如图,在平面直角坐标系xOy中,点A的坐标为(1,3),点B的坐标为(2,-1),点C在同一坐标平面中,且△ABC是以AB为底的等腰三角形,若点C的坐标是(x,y),则x、y之间的关系为y=______(用含有x的代数式表示).16.函数中自变量x的取值范围是______.17.数:的整数部分为_____.18.如图,ΔABC与ΔA′B′C′关于直线l对称,则∠B的度数为____.三、解答题(共78分)19.(8分)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=100°,∠D=30°,求∠AEM的度数.20.(8分)如图,在中,,以为直角边作等腰,,斜边交于点.(1)如图1,若,,作于,求线段的长;(2)如图2,作,且,连接,且为中点,求证:.21.(8分)如图是规格为的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使点A的坐标为,点的坐标为;(2)在第二象限内的格点上找一点,使点与线段组成一个以为底的等腰三角形,且腰长是无理数,画出,则点的坐标是,的周长是(结果保留根号);(3)作出关于轴对称的.22.(10分)已知一次函数的图象经过点(2,1)和(0,﹣2).(1)求出该函数图象与x轴的交点坐标;(2)判断点(﹣4,6)是否在该函数图象上.23.(10分)先化简,再求值:,其中a=.24.(10分)已知:如图,△ABC中,P、Q两点分别是边AB和AC的垂直平分线与BC的交点,连结AP和AQ,且BP=PQ=QC.求∠C的度数.证明:∵P、Q两点分别是边AB和AC的垂直平分线与BC的交点,∴PA=,QC=QA.∵BP=PQ=QC,∴在△APQ中,PQ=(等量代换)∴△APQ是三角形.∴∠AQP=60°,∵在△AQC中,QC=QA,∴∠C=∠.又∵∠AQP是△AQC的外角,∴∠AQP=∠+∠=60°.(三角形的一个外角等于与它不相邻的两个内角的和)∴∠C=.25.(12分)如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有多少个?请分别在下图中涂出来,并画出这个轴对称图形的对称轴.26.沿面积为正方形边的方向剪出一个长方形,能否使剪出的长方形的长、宽之比为3:2,且面积为?

参考答案一、选择题(每题4分,共48分)1、C【分析】根据题意,利用大正方形的面积减去小正方形的面积表示出长方形的面积,再化简整理即可.【详解】根据题意,得:(2m+3)2-(m+3)2=[(2m+3)+(m+3)][(2m+3)-(m+3)]=(3m+6)m=3m2+6m.故选C.【点睛】本题主要考查平方差公式的几何背景,解决此题的关键是利用两正方形的面积表示出长方形的面积.2、B【分析】通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】解:如图,在AC上截取AE=AN,连接BE,

∵∠BAC的平分线交BC于点D,

∴∠EAM=∠NAM,

在△AME与△AMN中,∴△AME≌△AMN(SAS),

∴ME=MN.

∴BM+MN=BM+ME≥BE,

当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,

∵,∠BAC=45°,此时△ABE为等腰直角三角形,

∴BE=,即BE取最小值为,

∴BM+MN的最小值是.

故选:B.【点睛】本题考察了最值问题,能够通过构造全等三角形,把BM+MN进行转化,是解题的关键.3、D【分析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.【详解】当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.则这条直线解析式为y=﹣x+1.故选D.【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.4、C【详解】不等式组的解集为:1≤x<3,表示在数轴上:,故选C.【点睛】本题考查了不等式组的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、B【解析】直接利用分式的加减运算法则计算得出答案.【详解】解:.故从第②步开始出现错误.故选:B.【点睛】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.6、B【分析】由△ABC≌△EBD,可得AB=BE=4cm,BC=BD=7cm,根据EC=BC﹣BE计算即可.【详解】解:∵△ABC≌△EBD,∴AB=BE=4cm,BC=BD=7cm,∴EC=BC﹣BE=7﹣4=3(cm),故选:B.【点睛】本题考查全等三角形的性质,线段的和差定义等知识,解题的关键是熟练掌握基本知识.7、C【解析】两边同乘2x(x-1),得1(x-1)=2x,整理、解得:x=1.检验:将x=1代入2x(x-1)≠0,∴方程的解为x=1.故选C8、A【分析】过A作AH⊥BC于H,根据三角形的面积公式得到S△ACD=CD•AH,S△ABD=BD•AH,由于△ACD和△ABD面积相等,于是得到CD•AH=BD•AH,即可得到结论.【详解】过A作AH⊥BC于H,∵S△ACD=CD⋅AH,S△ABD=BD⋅AH,∵△ACD和△ABD面积相等,∴CD⋅AH=BD⋅AH,∴CD=BD,∴线段AD是三角形ABC的中线故选A.【点睛】此题考查三角形的角平分线、中线和高,解题关键在于画出图形.9、C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A.32+42=52,能构成直角三角形,故不符合题意;B.12+12=()2,能构成直角三角形,故不符合题意;C.82+122≠132,不能构成直角三角形,故符合题意;D.()2+()2=()2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10、B【分析】中心对称图形,是把一个图形绕一个点旋转180°后能和原来的图形重合.【详解】A、C、D中的汽车标志都满足中心对称图形的定义,都属于中心对称图形,而选项B中的汽车标志绕其圆心旋转180°后,不能和原来的图形重合,所以不是中心对称图形.故选B.【点睛】考核知识点:中心对称图形的识别.11、B【分析】先利用∠C=90°,∠DBC=60°,求出∠BDC=30°,再利用30°所对的直角边是斜边的一半可求出BD的长,再利用外角求出∠DBA,即可发现AD=BD.【详解】解:∵∠C=90°,∠DBC=60°∴∠BDC=30°∴BD=2BC=2又∵∠BDC是△BDA的外角∴∠BDC=∠A+∠DBA∴∠DBA=∠BDC-∠A=15°∴∠DBA=∠A∴AD=BD=2故选B【点睛】此题考查的是(1)30°所对的直角边是斜边的一半;(2)三角形的外角等于与它不相邻的两个内角之和;(3)等角对等边,解决此题的关键是利用以上性质找到图中各个边的数量关系12、C【解析】试题解析:被开方数含分母,不是最简二次根式;被开方数中含能开得尽方的因数,不是最简二次根式;是最简二次根式,故选C.二、填空题(每题4分,共24分)13、67°【解析】根据全等三角形的性质,两三角形全等,对应角相等,因为角与67°的角是对应角,因此,故答案为67°.14、【分析】连接BD,根据勾股定理求出BD,再根据勾股定理逆定理证明,在计算面积即可;【详解】连接BD,∵∠A=90°,AB=2,AD=,∴,又∵CD=3,BC=5,∴,∴,∴.故答案是:.【点睛】本题主要考查了勾股定理和勾股定理逆定理,准确分析计算是解题的关键.15、【分析】设的中点为,过作的垂直平分线,通过待定系数法求出直线的函数表达式,根据可以得到直线的值,再求出中点坐标,用待定系数法求出直线的函数表达式即可.【详解】解:设的中点为,过作的垂直平分线∵A(1,3),B(2,-1)设直线的解析式为,把点A和B代入得:解得:∴∵D为AB中点,即D(,)∴D(,)设直线的解析式为∵∴∴∴把点D和代入可得:∴∴∴点C(x,y)在直线上故答案为【点睛】本题主要考查了等腰三角形的性质,中垂线的性质,待定系数法求一次函数的表达式,根据题意作出中垂线,再用待定系数法求出一次函数的解析式是解题的关键.16、【分析】根据二次根式及分式有意义的条件,结合所给式子得到关于x的不等式组,解不等式组即可求出x的取值范围.【详解】由题意得,,解得:-2<x≤3,故答案为-2<x≤3.【点睛】本题考查了二次根式及分式有意义的条件,注意掌握二次根式有意义:被开方数为非负数,分式有意义分母不为零.17、1【分析】先确定在3和4之间,然后的整数部分就能确定.【详解】根据<<可得出的整数部分为3,进而可得出的整数部分.解:∵<<,∴的整数部分为1.故答案为:1.【点睛】本题主要考查了无理数的比较大小,熟练掌握有理数与无理数的大小比较是解题的关键.18、100°【分析】依据轴对称的性质可得到∠C=∠C′,然后依据三角形的内角和定理求解即可.【详解】解:∵△ABC与△A′B′C′关于直线l对称,

∴∠C=∠C′=30°.

∴∠B=180°-∠A-∠C=180°-50°-30°=100°.

故答案为100°.【点睛】本题主要考查的是轴对称的性质、三角形的内角和定理,熟练掌握相关知识是解题的关键.三、解答题(共78分)19、(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【解析】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.本题解析:(1)证明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.20、(1);(2)见解析【分析】(1)由直角三角形的性质可求,由等腰直角三角形的性质可得,即可求BC的长;(2)过点A作AM⊥BC,通过证明△CNM∽△CBD,可得,可得CD=2CN,AN=BD,由“SAS”可证△ACN≌△CFB,可得结论.【详解】(1),,,,,.,,,且,,,;(2)如图,过点作,,,,,,,,,,,,,且,,且,,.,.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,直角三角形的性质,相似三角形的判定和性质等知识,添加恰当辅助线构造全等三角形是本题的关键.21、(1)见解析;(2)(-1,1),;(3)见解析【分析】(1)把点A向右平移2个单位,向下平移4个单位就是原点的位置,建立相应的平面直角坐标系;(2)作线段AB的垂直平分线,寻找满足腰长是无理数的点C即可,利用格点三角形分别求出三边的长度,即可求出△ABC的周长;(3)分别找出A、B、C关于y轴的对称点,顺次连接即可.【详解】(1)把点A向右平移2个单位,向下平移4个单位就是原点的位置,建立相应的平面直角坐标系,如图;(2)作线段AB的垂直平分线,寻找满足腰长是无理数的点C,点C的坐标为(-1,1),,AC=BC=,则△ABC的周长为:;(3)分别找出A、B、C关于y轴的对称点,顺次连接,如图所示.【点睛】本题是对坐标系和轴对称的综合考查,熟练掌握轴对称,垂直平分线性质和勾股定理是解决本题的关键.22、(1)(,0);(2)点(﹣4,6)不在该函数图象上【分析】(1)设一次函数解析式为y=kx+b,把已知两点坐标代入求出k与b的值,即可确定出解析式,然后令y=0,即可求得与x轴的交点坐标;(2)将x=﹣4代入解析式计算y的值,与6比较即可.【详解】解:(1)设该函数解析式为y=kx+b,把点(2,1)和(0,﹣2)代入解析式得2k+b=1,b=﹣2,解得k=,b=﹣2,∴该函数解析式为y=x﹣2,令y=0,则x﹣2=0,解得x=,∴该函数图象与x轴的交点为(,0);(2)当x=﹣4时,y=×(﹣4)﹣2=﹣8≠6,∴点(﹣4,6)不在该函数图象上.【点睛】此题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.23、2a+6,1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入即可解答本题.【详解】解:原式===2a+6当a==1+4=5时,原式=2×5+6=1.【点睛】本题考查分式的化简求值、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.24、BP,垂直平分线上任意一点,到线段两端点的距离相等,PA=QA,等边,QAC,C,QAC,30°.【分析】根据线段垂直平分线的性质可得PA=B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论