




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,AC∥BD,AD与BC相交于O,∠A=45°,∠B=30°,那么∠AOB等于()A.75° B.60° C.45° D.30°2.王师傅用4根木条钉成一个四边形木架,如图.要使这个木架不变形,他至少还要再钉上几根木条?().A.0根 B.1根 C.2根 D.3根3.下列命题是真命题的是()A.如果两个角相等,那么它们是对顶角B.两锐角之和一定是钝角C.如果x2>0,那么x>0D.16的算术平方根是44.的算术平方根是()A. B. C.4 D.25.如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是()A.BF=CF B.∠C+∠CAD=90° C.∠BAF=∠CAF D.6.如图,∥,点在直线上,且,,那么=()A.45° B.50° C.55° D.60°7.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72° B.45° C.36° D.30°8.如图,在中,,边的垂直平分线交于点.已知的周长为14,,则的值为()A.14 B.6 C.8 D.209.下列实数中的无理数是()A.﹣ B.π C.1.57 D.10.下列命题中是真命题的是()A.中位数就是一组数据中最中间的一个数B.这组数据0,2,3,3,4,6的方差是2.1C.一组数据的标准差越大,这组数据就越稳定D.如果的平均数是,那么二、填空题(每小题3分,共24分)11.如图,直线a∥b,∠1=45°,∠2=30°,则∠P=_______°.12.用科学记数法表示下列各数:0.00004=_____.13.如图,在中,,平分,交于点,若,,则周长等于__________.14.在Rt△ABC中,,,,则=_____.15.函数自变量的取值范围是______.16.计算:(x+a)(y-b)=______________________17.若解分式方程产生增根,则__________.18.如图,在中,是的垂直平分线.若,的周长为13,则的周长为______.三、解答题(共66分)19.(10分)(1)计算:(2)解方程:20.(6分)运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).21.(6分)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)1xy+y1﹣1+x1=x1+1xy+y1﹣1=(x+y)1﹣1=(x+y+1)(x+y﹣1)(1)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x1+1x﹣3=x1+1x+1﹣4=(x+1)1﹣11=(x+1+1)(x+1﹣1)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a1﹣b1+a﹣b;(1)分解因式:x1﹣6x﹣7;(3)分解因式:a1+4ab﹣5b1.22.(8分)如图,一架2.5米长的梯子AB斜靠在一座建筑物上,梯子底部与建筑物距离BC为0.7米.(1)求梯子上端A到建筑物的底端C的距离(即AC的长);(2)如果梯子的顶端A沿建筑物的墙下滑0.4米(即AA′=0.4米),则梯脚B将外移(即BB′的长)多少米?23.(8分)如图,是的外角的平分线,且交的延长线于点.(1)若,,求的度数;(2)请你写出、、三个角之间存在的等量关系,并写出证明过程.24.(8分)已知:如图,中,∠ABC=45°,于D,BE平分∠ABC,且于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G(1)求证:BF=AC;(2)判断CE与BF的数量关系,并说明理由25.(10分)如图,在△ABC中,∠BAC=60°,∠C=40°,P,Q分别在BC,CA上,AP,BQ分别是∠BAC,∠ABC的角平分线.求证:BQ+AQ=AB+BP.26.(10分)如图,AE=AD,∠ABE=∠ACD,BE与CD相交于O.(1)如图1,求证:AB=AC;(2)如图2,连接BC、AO,请直接写出图2中所有的全等三角形(除△ABE≌△ACD外).
参考答案一、选择题(每小题3分,共30分)1、A【详解】解:三角形的外角等于与它不相邻的两个内角和,由题,∵AC∥BD,∴∠C=∠B=30°,∵∠AOB是△AOC的一个外角,∴∠AOB=∠C+∠A=45°+30°=75°,选A.【点睛】本题考查平行线的性质和三角形的外角.2、B【解析】三角形具有稳定性,连接一条对角线,即可得到两个三角形,故选B3、D【分析】直接利用对顶角的性质、锐角钝角的定义以及实数的相关性质分别判断得出答案.【详解】A.如果两个角相等,这两角不一定是对顶角,故此选项不合题意;B.两锐角之和不一定是钝角,故此选项不合题意;C.如果x2>0,那么x>0或x<0,故此选项不合题意;D.16的算术平方根是4,是真命题.故选:D.【点睛】此题主要考查了命题与定理,正确掌握相关性质是解题关键.4、D【分析】先化简,再求的算术平方根即可.【详解】=4,4的算术平方根是1,的算术平方根1.故选择:D.【点睛】本题考查算数平方根的算数平方根问题,掌握求一个数的算术平方根的程序是先化简这个数,再求算术平方根是解题关键.5、C【分析】根据三角形的角平分线、中线和高的概念判断.【详解】解:∵AF是△ABC的中线,
∴BF=CF,A说法正确,不符合题意;
∵AD是高,
∴∠ADC=90°,
∴∠C+∠CAD=90°,B说法正确,不符合题意;
∵AE是角平分线,
∴∠BAE=∠CAE,C说法错误,符合题意;
∵BF=CF,
∴S△ABC=2S△ABF,D说法正确,不符合题意;
故选:C.【点睛】本题考查的是三角形的角平分线、中线和高,掌握它们的概念是解题的关键.6、C【解析】根据∥可以推出,根据平角的定义可知:而,∴,∴;∵∴,∴.故应选C.7、C【解析】试题分析:根据三角形的内角和可知∠A+∠B+∠C=180°,即5∠A=180°,解得∠A=36°.故选C考点:三角形的内角和8、C【分析】根据线段垂直平分线的性质,可知,然后根据的周长为,可得,再由可得,即.【详解】解:边垂直平分线又的周长=,即.故选C【点睛】此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出,然后根据三角形的周长互相代换,即可其解.9、B【分析】无限不循环小数是无理数,根据定义判断即可.【详解】解:A.﹣是分数,属于有理数;B.π是无理数;C.1.57是有限小数,即分数,属于有理数;D.是分数,属于有理数;故选:B.【点睛】此题考查无理数的定义,熟记定义并运用解题是关键.10、D【分析】根据中位数的概念、方差的计算公式、方差的性质判断.【详解】解:A、中位数是一组数据中最中间的一个数或最中间的两个数的平均数,本选项说法是假命题;
B、(0+2+3+3+4+6)=3,[(0-3)2+(2-3)2+(3-3)2+(3-3)2+(4-3)2+(6-3)2]=,则本选项说法是假命题;C、一组数据的标准差越大,这组数据就越不稳定,本选项说法是假命题;D、如果x1,x2,x3,…,xn的平均数是,那么(x1-)+(x2-)+…+(xn-)=0,是真命题;故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(每小题3分,共24分)11、1.【详解】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=1°,故答案为1.【点睛】本题考查平行线的性质,正确添加辅助线是解题关键.12、4×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00004=4×10﹣1;故答案为:4×10﹣1.【点睛】此题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13、6+6【分析】根据含有30°直角三角形性质求出AD,根据勾股定理求出AC,再求出AB和BD即可.【详解】因为在中,,所以所以AD=2CD=4所以AC=因为平分,所以=2所以所以BD=AD=4,AB=2AC=4所以周长=AC+BC+AB=++2+4==6+6故答案为:6+6【点睛】考核知识点:含有30°直角三角形性质,勾股定理;理解直角三角形相关性质是关键.14、1【分析】在Rt△ABC中,∠C=90°,则AB2=AC2+BC2,根据题目给出的AB,AC的长,则根据勾股定理可以求BC的长.【详解】∵AB=13,AC=12,∠C=90°,
∴BC=1.
故答案为:1.【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的根据勾股定理求值是解题的关键.15、【分析】根据分母不为零分式有意义,可得答案.【详解】解:由题意,得
1-x≠0,解得x≠1,故答案为x≠1.【点睛】本题考查了函数值变量的取值范围,利用分母不为零得出不等式是解题关键.16、xy+ay-bx-ab【分析】根据多项式乘以多项式的运算法则进行计算即可得到答案.【详解】(x+a)(y-b)=xy+ay-bx-ab.故答案为:xy+ay-bx-ab.【点睛】本题主要考查了多项式乘以多项式的运算法则,注意不要漏项,有同类项的合并同类项.17、-5.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【详解】方程两边都乘(x+4),得∵原方程增根为x=−4,∴把x=−4代入整式方程,得,解得.故答案为-5.【点睛】本题考查分式方程的增根,解决本题时需注意,要将增根x=-4,代入分式方程化为整式方程后的方程中,不然无法求得m的值.18、【分析】由线段的垂直平分线的性质可得,从而可得答案.【详解】解:是的垂直平分线.,的周长故答案为:【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线的性质是解题的关键.三、解答题(共66分)19、(1)2x―1;(2)x=-1【分析】(1)原式第一项利用平方差公式化简,第二项利用单项式乘多项式法则计算,即可得到结果;(2)原式两边同时乘以最简公分母(2x-1),化成整式方程,解之即可.【详解】(1)解:原式=x2-1+2x-x2=2x-1(2)解:x=2x-1+2-x=1x=-1检验:当x=-1时,2x―1≠0则x=-1是原分式方程的解.【点睛】本题考查了整式乘法和解分式方程,关键是要掌握运算法则和解方程的步骤,注意解分式方程要检验.20、21x+1.【分析】分别根据平方差公式以及多项式乘多项式的法则展开算式,再合并同类项即可.【详解】解:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)=(2x)2﹣1﹣(4x2+3x﹣24x﹣18)=4x4﹣1﹣4x2﹣3x+24x+18=21x+1.【点睛】本题主要考查整式的混合运算,需要熟记平方差公式以及多项式乘以多项式的法则.21、(1);(1);(3).【解析】试题分析:(1)仿照例(1)将前两项和后两项分别分作一组,然后前两项利用平方差公式分解,然后提出公因式(a-b)即可;(1)仿照例(1)将-7拆成9-16,然后前三项利用完全平方公式分解后,再用平方差公式分解即可;(3)仿照例(1)将-5b1拆成4b1-9b1,然后前三项利用完全平方公式分解后,再用平方差公式分解即可.试题解析:解:(1)==;(1)原式====;(3)原式====.点睛:本题考查了因式分解的综合应用,熟悉因式分解的方法和读懂例题是解决此题的关键.22、(1)梯子上端A到建筑物的底端C的距离为2.4米;(2)梯脚B将外移0.8米.【分析】(1)在Rt△ABC中利用勾股定理求出AC的长即可;(2)由(1)可以得出梯子的初始高度,下滑0.4米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为0.7米,可以得出,梯子底端水平方向上滑行的距离.【详解】(1)在△ABC中,∠ACB=90°,AB=2.5,BC=0.7根据勾股定理可知AC=米答:梯子上端A到建筑物的底端C的距离为2.4米.(2)在△AˊBˊC中,∠ACB=90°,AˊBˊ=AB=2.5米,AˊC=AC-AAˊ=2.4-0.4=2米根据勾股定理可知BˊC=米米答:梯脚B将外移0.8米.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.23、(1);(2),证明见解析.【分析】(1)根据三角形的外角定理,即可得到,再根据角平分线的性质可求得,最后利用三角形的外角定理即可求得.(2)根据三角形的外角定理,可求得,,由平分可知,进而得到,即可得三角之间的等量关系为.【详解】(1)∵是的外角,∴∵,∴∵是的平分线∴∵是的外角,∴∵,∴(2),证明如下:∵是的外角.∴∵是的外角.∴∵是的平分线,∴∴∴即:.【点睛】本题主要考查了三角形的外角定理和角平分线的性质,熟练掌握性质才能灵活应用性质解题.24、(1)证明见解析;(2),理由见解析【分析】(1)由题意可以得到Rt⊿DFB≅Rt⊿DAC,从而得到BF=AC;(2)由题意可以得到Rt⊿BEA≅Rt⊿BEC,所以.【详解】证明:∵CD⊥AB,∠ABC=45°,∴BCD是等腰直角三角形,∠DBF=90°-∠BFD,∠A=90°-∠DCA,又,∴∠EFC=90°-∠DCA,∴∠A=∠EFC∵∠BFD=∠EFC,∴∠A=∠DFB,∴在Rt⊿DFB和Rt⊿DAC中,∠BDF=∠CDA,∠A=∠DFB,BD=DC,∴Rt⊿DFB≅Rt⊿DAC,∴BF=AC;(2)理由是:∵BE平分ABC,∴∠ABE=∠CBE,在Rt⊿BEA和Rt⊿BEC中,∠AEB=∠CEB,BE=BE,∠ABE=∠CBE,∴Rt⊿BEA≅Rt⊿BEC,∴由(1)得:.【点睛】本题考查三角形的综合问题,熟练掌握三角形全等的判定和性质是解题关键.25、证明见解析.【分析】延长AB到D,使BD=BP,连接PD,由题意得:∠D=∠1=∠4=∠C=40°,从而得QB=QC,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年个体私营企业劳动合同模板
- 2025商业空间装修设计合同示范文本
- 福建中考试题及答案
- 分管人员考试题及答案
- 防护员考试题及答案视频
- 2025年全国大学生艾滋病防治知识竞赛单选题及答案(共50题)
- 动画角色考试题目及答案
- 2025年居民交通安全知识汇编
- 中国触觉薄膜开关行业市场前景预测及投资价值评估分析报告
- 中国异丁醇项目创业计划书
- 2025.4.15成都市住建局《房屋市政工程生产安全重大事故隐患判定标准(2024版)》解析
- GB/T 13460-2025再生橡胶通用规范
- 网络安全知识手册
- 2025-2030中国实时示波器行业市场现状供需分析及投资评估规划分析研究报告
- 口腔门诊医疗废物管理制度
- 2025年陪玩培训考试题及答案
- 2025年广东中山市生态环境局所属事业单位招聘事业单位人员历年自考难、易点模拟试卷(共500题附带答案详解)
- 肾癌放射治疗
- 计算机网络(中国石油大学(华东))知到智慧树章节测试课后答案2024年秋中国石油大学(华东)
- 2025年保健产品全国总代理商协议模板
- 《英文海报的写法》课件
评论
0/150
提交评论