2023届河北省石家庄市桥西区部分学校数学八年级第一学期期末监测试题含解析_第1页
2023届河北省石家庄市桥西区部分学校数学八年级第一学期期末监测试题含解析_第2页
2023届河北省石家庄市桥西区部分学校数学八年级第一学期期末监测试题含解析_第3页
2023届河北省石家庄市桥西区部分学校数学八年级第一学期期末监测试题含解析_第4页
2023届河北省石家庄市桥西区部分学校数学八年级第一学期期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知,则代数式的值是()A. B. C. D.2.2014年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:若每月每户居民用水不超过4m3,则按每立方米2元计算;若每月每户居民用水超过4m3,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民用水xm3,水费为y元,则y与x的函数关系式用图象表示正确的是()A. B. C. D.3.下列运算结果为的是A. B. C. D.4.点P(2018,2019)在第()象限.A.一 B.二 C.三 D.四5.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为(

)A.6,(﹣3,5) B.10,(3,﹣5) C.1,(3,4) D.3,(3,2)6.九年级二班45名同学在学校举行的“爱心涌动校园”募捐活动中捐款情况如下表捐款数(元)

10

20

30

40

50

捐款人数(人)

8

17

16

2

2

则全班捐款的45个数据,下列错误的()A.中位数是30元 B.众数是20元 C.平均数是24元 D.极差是40元7.数0.0000045用科学记数法可表示为()A.4.5×10﹣7 B.4.5×10﹣6 C.45×10﹣7 D.0.45×10﹣58.若分式中的变为原来的倍,则分式的值()A.变为原来的倍 B.变为原来的倍 C.变为原来的 D.不变9.若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A.4 B.5 C.6 D.810.如图,中,为线段AB的垂直平分线,交于点E,交于D,连接,若,则的长为()A.6 B.3 C.4 D.211.如图,在△ABC中,AD⊥BC,添加下列条件后,还不能使△ABD≌△ACD的是()A. B. C. D.12.如图,在△ABC中,∠BAC=45°,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC;③BE+CH=AE;④△AEC是等腰直角三角形.你认为正确的序号是()A.①②③ B.①③④ C.②③④ D.①②③④二、填空题(每题4分,共24分)13.如图,在中,,,垂直平分,点为直线上的任一点,则周长的最小值是__________14.定义:到三角形两边距离相等的点叫做三角形的准内心.已知在中,,,,点是的准内心(不包括顶点),且点在的某条边上,则的长为______.15.若的整数部分为,则满足条件的奇数有_______个.16.函数的自变量的取值范围是___________17.一个多边形的每个外角都是36°,这个多边形是______边形.18.AB两地相距20km,甲从A地出发向B地前进,乙从B地出发向A地前进,两人沿同一直线同时出发,甲先以8km/h的速度前进1小时,然后减慢速度继续匀速前进,甲乙两人离A地的距离S(km)与时间t(h)的关系如图所示,则甲出发____小时后与乙相遇.三、解答题(共78分)19.(8分)一项工程,如果由甲队单独做这项工程刚好如期完成,若乙队单独做这项工程,要比规定日期多5天完成.现由若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.已知甲、乙两队施工一天的工程费分别为16万元和14万元.(1)求规定如期完成的天数.(2)现有两种施工方案:方案一:由甲队单独完成;方案二:先由甲、乙合作4天,再由乙队完成其余部分;通过计算说明,哪一种方案比较合算.20.(8分)(1)解方程:(2)计算:3a(2a2-9a+3)-4a(2a-1)(3)计算:()×()+|-1|+(5-2π)0(4)先化简,再求值:(xy2+x2y),其中x=,y=.21.(8分)如图所示,在△ABC中,BE平分∠ABC,DE∥BC.(1)试猜想△BDE的形状,并说明理由;(2)若∠A=35°,∠C=70°,求∠BDE的度数.22.(10分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)证明:△BCE≌△CAD;(2)若AD=15cm,BE=8cm,求DE的长.23.(10分)解分式方程:x-224.(10分)如图,在网格中,每个小正方形的边长都为.(1)建立如图所示的平面直角坐标系,若点,则点的坐标_______________;(2)将向左平移个单位,向上平移个单位,则点的坐标变为_____________;(3)若将的三个顶点的横纵坐标都乘以,请画出;(4)图中格点的面积是_________________;(5)在轴上找一点,使得最小,请画出点的位置,并直接写出的最小值是______________.25.(12分)如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.26.先化简,再求值:,在0,1,2,三个数中选一个合适的,代入求值.

参考答案一、选择题(每题4分,共48分)1、C【分析】先将化简得到a-b=-2ab,再代入代数式进行计算.【详解】∵,∴a-b=-2ab,∴,故选:C.【点睛】此题考查分式的化简计算,将代数式的值整体代入计算是求分式值的方法.2、C【详解】由题意知,y与x的函数关系为分段函数.故选C.考点:1.一次函数的应用;2.一次函数的图象.3、D【分析】根据整式运算法则逐个分析即可.【详解】A.,B.,C.=,D.=.故选D【点睛】本题考核知识点:整式基本运算.解题关键点:掌握实数运算法则.4、A【分析】根据各象限内点的坐标特征解答.【详解】解:点P(2018,2019)在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5、D【解析】依题意可得:∵AC∥x,∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选D.点睛:本题考查已知点求坐标及如何根据坐标描点,正确画图即可求解.6、A【解析】经计算平均数是24元,众数是20元,中位数是20元,极差是40元.所以A选项错误.7、B【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000045=4.5×10-1.故选:B.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8、C【分析】直接将题目中的、根据要求,乘以2计算再整理即可.【详解】解:依题意可得所以分式的值变为原来的故选:C.【点睛】本题考查的是分式的值的变化,这里依据题意给到的条件,代入认真计算即可.9、B【分析】先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得.【详解】解:根据题意,此正多边形的边数为360°÷45°=8,则该正多边形从一个顶点出发的对角线的条数为:8﹣3=5(条).故选:B.【点睛】本题主要考查了多边形的对角线,多边形的外角和定理,n边形从一个顶点出发可引出(n−3)条对角线.10、B【分析】利用垂直平分线的性质得到AD=BD=6,∠A=∠ABD=30°,再根据∠C=90°得到∠CBD=30°,从而根据30°所对的直角边是斜边的一半得到结果.【详解】解:∵DE垂直平分AB,∴AD=BD=6,∠A=∠ABD=30°,∵∠C=90°,∴∠CBD=∠ABC-∠ABD=30°,∴CD=BD=3,故选B.【点睛】本题考查了垂直平分线的性质,含30°角的直角三角形的性质,解题的关键是熟练掌握含30°角的直角三角形的性质,即在直角三角形中,30°角所对的直角边等于斜边的一半.11、D【分析】根据全等三角形的判定定理解答即可.【详解】∵AD⊥BC∴∠ADC=∠ADB=90°若添加AB=AC,又AD=AD则可利用“HL”判定全等,故A正确;若添加BD=CD,又AD=AD则可利用“SAS”判定全等,故B正确;若添加∠B=∠C,又AD=AD则可利用“AAS”判定全等,故C正确;若添加AD=BD,无法证明两个三角形全等,故D错误.故选:D【点睛】本题考查了直角三角形全等的判定,掌握直角三角形的判定方法“SSS”、“AAS”、“SAS”、“ASA”“HL”是关键.12、C【分析】①根据AD⊥BC,若∠ABC=45°则∠BAD=45°,而∠BAC=45°,很明显不成立;

②③可以通过证明△AEH与△CEB全等得到;

④CE⊥AB,∠BAC=45°,所以是等腰直角三角形.【详解】①∵CE⊥AB,EH=EB,∴∠EBH=45°,∴∠ABC>45°,故①错误;∵CE⊥AB,∠BAC=45°,∴AE=EC,在△AEH和△CEB中,,∴△AEH≌△CEB(SAS),∴AH=BC,故选项②正确;又EC=EH+CH,∴AE=BE+CH,故选项③正确.∵AE=CE,CE⊥AB,所以△AEC是等腰直角三角形,故选项④正确.∴②③④正确.故选B.【点睛】本题主要利用全等三角形的对应边相等进行证明,找出相等的对应边后,注意线段之间的和差关系.二、填空题(每题4分,共24分)13、1【分析】根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可得到结论.【详解】∵EF垂直平分BC,∴B、C关于EF对称,连接AC交EF于D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴△ABP周长的最小值是4+3=1.故答案为:1.【点睛】本题考查了垂直平分线的性质,轴对称−最短路线问题的应用,解此题的关键是找出P的位置.14、或或3【分析】分三种情形①点P在AB边上,②点P在AC边上,③点P在BC边上,分别讨论计算即可.【详解】解:∵,,,∴,如图3中,当点在边上时,∵点是的准内心,∴,作于,于F,∵C平分∠ACB,∴PE=PF,∠PCE=45°,∴△CPE是等腰直角三角形.∵,∴PE=.∴,∴;如图4中,当点在边上时,作于,设,∵点是的准内心,∴,∵,,∴,在△BCP和△BEP中∵,∠BCP=∠BEP=90°,BP=BP,∴△BCP≌△BEP,∴,∴,∴,解得:;如图5中,当点在边上时,与当点在边上时同样的方法可得;故答案为:或或3.【点睛】本题考查角平分线的性质、勾股定理、等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的准内心的定义等知识,解题的关键是理解题意,学会分类讨论,属于中考常考题型.15、9【分析】的整数部分为,则可求出a的取值范围,即可得到答案.【详解】解:的整数部分为,则a的取值范围8<a<27所以得到奇数有:9、11、13、15、17、19、21、23、25共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.16、【分析】根据二次根式的性质和分母的意义,被开方数大于或等于0,分母不等于0,可以求出x的取值范围.【详解】由题意得解得故答案为:.【点睛】本题考查了二次根式的性质和分母的意义,掌握被开方数大于或等于0,分母不等于0是解题的关键.17、十【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是36°,∴n=360°÷36°=10,故答案为:十.【点睛】本题考查多边形内角与外角,掌握多边形的外角和为解题关键.18、2【分析】根据函数图象求出甲减速后的速度和乙的速度,然后根据相遇问题的等量关系列方程求解即可.【详解】解:由函数图象可得:甲减速后的速度为:(20-8)÷(4-1)=4km/h,乙的速度为:20÷5=4km/h,设甲出发x小时后与乙相遇,由题意得:8+4(x-1)+4x=20,解得:x=2,即甲出发2小时后与乙相遇,故答案为:2.【点睛】本题考查了从函数图象获取信息以及一元一次方程的应用,能够根据函数图象求出甲减速后的速度和乙的速度是解题的关键.三、解答题(共78分)19、(1)20天;(2)方案一合算【分析】(1)设规定的工期为x天,则甲队单独完成此项工程需x天,乙队单独完成此项工程需天,总工程量为a,由此可求出甲、乙两队的施工效率,然后根据“甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成”列出关于x的分式方程,解之经检验后即可得出结论;(2)利用“总费用=单天费用×工作时间”分别求出方案一、二所需费用,比较后即可得出结论.【详解】(1)设规定的工期为x天,则甲队单独完成此项工程需x天,乙队单独完成此项工程需天,总工程量为a因此,甲队的施工效率为,乙队的施工效率为由题意得:整理得:解得:经检验,是原分式方程的解,且符合题意答:规定工期为20天;(2)方案一所需费用为(万元)方案二所需费用为(万元)因故选择方案一合算.【点睛】本题考查了分式方程的实际应用,依据题意,正确列出分式方程是解题关键.20、(1)分式方程无解;(2);(3)4;(4)【分析】(1)去分母化为整式方程求解即可,求出未知数的值要验根;(2)先算单项式与多项式的乘法,再合并同类项即可;(3)第一项按二次根式的乘法计算,第二项按化简绝对值的意义化简,第三项按零指数幂的意义化简,然后进一步合并化简即可;(4)先根据分式的运算法则把所给代数式化简,再把x=,y=代入计算.【详解】(1)去分母得:2x-2+3x+3=6,解得:x=1,经检验x=1是增根,分式方程无解;(2)原式;(3)原式=(4)原式=xy(x+y)=x﹣y,代入得当x=,y=时,原式=【点睛】本题考查了解分式方程,实数的混合运算,整式的混合运算,分式的化简求值,熟练掌握各知识点是解答本题的关键.21、(1)△BDE是等腰三角形,理由见解析;(2)∠BDE=105°【分析】(1)由角平分线和平行线的性质可得到∠BDE=∠DEB,可证得结论;(2)由∠A=35°,∠C=70°可求出∠ABC=75°,然后利用角平分线和平行线的性质可得到∠BDE=∠DEB即可求解.【详解】(1)△BDE是等腰三角形,理由:∵BE平分∠ABC,∴∠ABE=∠EBC,∵DE∥BC,∴∠DEB=∠EBC=∠ABE,∴BD=ED,∴△DBE为等腰三角形;(2)∵∠A=35°,∠C=70°,∴∠ABC=75°,∵BE平分∠ABC,DE∥BC,∴∠DEB=∠EBC=∠ABE=37.5°,∴∠BDE=105°.【点睛】本题考查了等腰三角形的判定与性质,角平分线和平行线的性质,解题的关键是熟练掌握等腰三角形的判定与性质.22、(1)见解析;(2)7cm.【分析】(1)根据垂直定义求出∠BEC=∠ACB=∠ADC,根据同角的余角相等得出∠ACD=∠CBE,根据AAS证明△CAD≌△BCE;(2)根据全等三角形的对应边相等得到AD=CE,BE=CD,利用DE=CE﹣CD,即可得出结论.【详解】(1)∵∠ACB=90°,BE⊥CE,AD⊥CE,∴∠BEC=∠ACB=∠ADC=90°,∴∠ACE+∠BCE=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△CAD和△BCE中,∵,∴△CAD≌△BCE;(2)∵△CAD≌△BCE,∴AD=CE,BE=CD,∴DE=CE﹣CD=AD﹣BE=15﹣8=7(cm).【点睛】本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解答本题的关键是得出证明△ADC和△CEB全等的三个条件.23、【解析】试题分析:试题解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论