2023届四川省宜宾市南溪区数学八上期末达标检测试题含解析_第1页
2023届四川省宜宾市南溪区数学八上期末达标检测试题含解析_第2页
2023届四川省宜宾市南溪区数学八上期末达标检测试题含解析_第3页
2023届四川省宜宾市南溪区数学八上期末达标检测试题含解析_第4页
2023届四川省宜宾市南溪区数学八上期末达标检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.将多项式分解因式,结果正确的是()A. B.C. D.2.若是完全平方式,则实数的值为()A. B. C. D.3.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B. C. D.4.若2x+m与x+2的乘积中不含的x的一次项,则m的值为()A.-4 B.4 C.-2 D.25.如图,把矩形沿折叠,使点落在点处,点落在点处,若,且,则线段的长为()A.1 B.2 C.3 D.46.下列各式中,正确的是()A.=±4 B.±=4 C. D.7.如图,,AE与BD交于点C,,则的度数为()A. B. C. D.8.不能判定一个四边形是平行四边形的条件是()A.两组对边分别平行 B.一组对边平行,另一组对边相等C.一组对边平行且相等 D.两组对边分别相等9.已知点关于x轴对称点的坐标是(-1,2),则点的坐标为()A.(1,2) B.(1,-2) C.(2,-1) D.(-1,-2)10.点(-2,5)关于x轴对称的点的坐标为()A.(2,-5) B.(-5,2) C.(-2,-5) D.(5,-2)11.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=312.下列各式中不能用平方差公式计算的是()A. B.C. D.二、填空题(每题4分,共24分)13.已知:如图,点分别在等边三角形的边的延长线上,的延长线交于点,则_______.14.在平面直角坐标系中,直线l1∥l2,直线l1对应的函数表达式为,直线l2分别与x轴、y轴交于点A,B,OA=4,则OB=_____.15.若分式方程的解为正数,则a的取值范围是______________.16.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的中位数是__________岁.17.如图,直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,则点G的坐标是____.18.若是正整数,则满足条件的的最小正整数值为__________.三、解答题(共78分)19.(8分)阅读材料:如图1,中,点,在边上,点在上,,,,延长,交于点,,求证:.分析:等腰三角形是一种常见的轴对称图形,几何试题中我们常将一腰所在的三角形沿着等腰三角形的对称轴进行翻折,从而构造轴对称图形.①小明的想法是:将放到中,沿等腰的对称轴进行翻折,即作交于(如图2)②小白的想法是:将放到中,沿等腰的对称轴进行翻折,即作交的延长线于(如图3)经验拓展:等边中,是上一点,连接,为上一点,,过点作交的延长线于点,,若,,求的长(用含,的式子表示).20.(8分)计算:;21.(8分)如图1,将等腰直角三角形绕点顺时针旋转至,为上一点,且,连接、,作的平分线交于点,连接.(1)若,求的长;(2)求证:;(3)如图2,为延长线上一点,连接,作垂直于,垂足为,连接,请直接写出的值.22.(10分)如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.23.(10分)(1)计算:-|-3|+(-2018)0+(-2)2019×(2)计算:〔(2x-y)(2x+y)-(2x-3y)2〕÷(-2y).24.(10分)把下列各式分解因式:(1)(2)25.(12分)计算:(1)a3•a2•a4+(﹣a)2(2)(x+y)2﹣x(2y﹣x)26.如图,和都是等腰直角三角形,,,连接.试猜想线段和之间的数量关系和位置关系,并加以证明.

参考答案一、选择题(每题4分,共48分)1、D【解析】先提取公因式x,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a-b)(a+b).解:x3-xy2=x(x2-y2)=x(x+y)(x-y),故选D.本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.2、C【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k的值.【详解】由完全平方式的形式(a±b)2=a2±2ab+b2可得:

kx=±2•2x•,

解得k=±.故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b)2=a2±2ab+b2是关键.3、D【分析】根据轴对称图形的概念判断即可求解.【详解】解:A、不是轴对称图形.故选项错误,不合题意;B、不是轴对称图形.故选项错误,不合题意;C、不是轴对称图形.故选项错误,不合题意;D、是轴对称图形.故选项正确,符合题意.故选:D.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.4、A【分析】先将(2x+m)(x+2)根据多项式乘多项式展开,找出所有含x的一次项,合并系数,使含x的一次项的系数为0,即可求出m的值.【详解】解:,∵乘积中不含x的一次项,∴,∴.故答案选:A.【点睛】本题考查多项式乘多项式的运算,属于基础题.理解不含某一项就是指含有这项的系数为0,注意合并同类项求解.5、B【分析】由平行线的性质和对折的性质证明△AEF是等边三角形,在直角三角形ABF中,求得∠BAF=,从而求得AF=1BF=1,进而得到EF=1.【详解】∵矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,∴∠B=90,∠EFC=∠AFE,ADBC,又∵∠AFE=60,∴∠AEF=∠AFE=60,∴△AEF是等边三角形,∴∠EAF=60,EF=AF,又∵ADBC,∴∠AFB=60,又∵∠B=90,BF=1,∴AF=1BF=1,又∵EF=AF,∴EF=1.故选:B.【点睛】考查了图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.6、C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A、,此项错误;B、,此项错误;C、,此项正确;D、,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.7、D【分析】直接利用三角形的外角性质得出度数,再利用平行线的性质分析得出答案.【详解】解:,.故选D.【点睛】考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.8、B【解析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.A、D、C均符合是平行四边形的条件,B则不能判定是平行四边形.故选B.9、D【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数.【详解】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,∴点关于x轴对称点的坐标是(-1,2),则点的坐标为(-1,-2).故选:D.【点睛】解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数.10、C【分析】关于x轴对称点的横坐标相同,纵坐标互为相反数.【详解】解:点(-2,5)关于x轴对称的点的坐标是(-2,-5).

故选:C.【点睛】本题主要考查的是关于坐标轴对称的点的坐标特点,明确关于x轴对称点的横坐标相同,纵坐标互为相反数;关于y轴对称点的纵坐标相同,横坐标互为相反数是解题的关键.11、C【分析】分式有意义时,分母x﹣3≠0,据此求得x的取值范围.【详解】依题意得:x﹣3≠0,解得x≠3,故选C.【点睛】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.12、A【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】解:A、由于两个括号中含x、y项的系数不相等,故不能使用平方差公式,故此选项正确;

B、两个括号中,含y项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;

C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,故此选项错误;

D、两个括号中,y相同,含2x的项的符号相反,故能使用平方差公式,故此选项错误;

故选A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.二、填空题(每题4分,共24分)13、【分析】利用等边三角形的三条边都相等、三个内角都是60°的性质推知AB=BC,∠ABE=∠BCF=120°,然后结合已知条件可证△ABE≌△BCF,得到∠E=∠F,因为∠F+∠CBF=60°,即可求出得度数.【详解】解:∵△ABC是等边三角形,

∴AB=BC∴∠ACB=∠ABC=60º,∴∠ABE=∠BCF=120°,

在△ABE和△BCF中,

∴△ABE≌△BCF(SAS);∴∠E=∠F,∵∠GBE=∠CBF,∠F+∠CBF=60°∴=∠GBE+∠B=60°,故答案为60°.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,线段垂直平分线的性质等知识点.在证明两个三角形全等时,一定要找准对应角和对应边.14、1【详解】∵直线∥,直线对应的函数表达式为,∴可以假设直线的解析式为,∵,∴代入得到∴∴故答案为1.15、a<8,且a≠1【解析】分式方程去分母得:x=2x-8+a,解得:x=8-a,根据题意得:8-a>2,8-a≠1,解得:a<8,且a≠1.故答案为:a<8,且a≠1.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.16、【分析】由图得到男子足球队的年龄及对应的人数,再根据中位数的概念即可得答案.【详解】由图可知:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∵∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,∵把这组数据从小到大排列11名和第12名的年龄分别是15岁、15岁,∴这些队员年龄的中位数是15岁,故答案为:15【点睛】本题考查了求一组数据的中位数.求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果数据有偶数个,则中间两个数据的平均数就是这组数据的中位数;熟练掌握中位数的等于是解题关键.17、(,0).【分析】根据轴对称求得直线AC的解析式,再根据正方形的性质以及轴对称的性质设G(m,0),则F(m,2m),代入直线AC的解析式,得到关于m的方程,解得即可.【详解】解:由直线y=2x+6可知A(0,6),B(﹣3,0).∵直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,∴直线AC为y=﹣2x+6,设G(m,0),∵正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,∴F(m,2m),代入y=﹣2x+6得:2m=﹣2m+6,解得:m,∴G的坐标为(,0).故答案为:(,0).【点睛】本题考查了一次函数图象与几何变换,正方形的性质,对称轴的性质,表示出F点的坐标是解题的关键.18、1【分析】先化简,然后依据也是正整数可得到问题的答案.【详解】解:==,∵是正整数,∴1n为完全平方数,

∴n的最小值是1.故答案为:1.【点睛】本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键.三、解答题(共78分)19、①证明见解析;②证明见解析;[经验拓展].【解析】阅读材料:①先根据三角形全等的判定定理得出,再根据三角形全等的性质可得,又根据角的和差、等腰三角形的性质得出两组相等的角,然后根据三角形全等的判定定理与性质可得,最后根据等量代换即可得证;②先根据三角形全等的判定定理得出,再根据三角形全等的性质可得,又根据角的和差、等腰三角形的性质得出两组相等的角,然后根据三角形全等的判定定理与性质可得,即得证;经验拓展:先根据等腰三角形的性质、邻补角的定义得出,再根据三角形全等的判定定理与性质得出,设,根据等腰三角形的性质、等边三角形的性质分别求出,然后根据角的和差可得,最后根据等腰三角形的判定与性质得出,从而根据线段的和差即可得出答案.【详解】阅读材料:①小明做法:作交于,则,,即;②小白做法:作交的延长线于,即,即;经验拓展:延长至点,使得,连接是等边三角形,设是等腰三角形(等腰三角形的三线合一).【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的性质、等边三角形的性质等知识点,通过作辅助线,构造全等三角形是解题关键.20、(1);(2)【分析】(1)先将二次根式进行化简,再合并同类二次根式;(2)利用平方差公式将展开,然后将分母有理化,再算减法即可.【详解】(1)(2)【点睛】本题考查二次根式的混合运算,熟练掌握二次根式的化简是解题的关键.21、(1);(2)见解析;(3)【分析】(1)根据题意及等腰直角三角形的性质可知AF=AD=DE=4,再利用勾股定理求出AE,然后根据线段之间的关系求解即可;(2)过点A作AP⊥BF,根据角平分线、等腰三角形的性质可证明△PAG为等腰直角三角形,过点C作CQ⊥BF,利用AAS可证明△ABP≌△BCQ,再利用全等的性质及线段间的关系可证明△CQG为等腰直角三角形,最后利用等腰直角三角形边的性质可证明结论;(3)过点B作BH⊥BN交NC的延长线于点H,利用AAS可证明△ABN≌△CBH,再利用全等的性质可证明△BHN为等腰直角三角形,从而可得到答案.【详解】解:(1)由题可得,∴在等腰中,,∴;(2)证明:如图,过作,∵平分,且,∴,又∵,∴,,由题可得,,∴,∴,∴,即为等腰直角三角形,∴,,过作,∵,∴,在与中,,∴△ABP≌△BCQ(AAS),∴,,又∵,∴,∴,即,∴,∴为等腰直角三角形,∴,∴;(3)如图,过点B作BH⊥BN交NC的延长线于点H,∵BH⊥BN,∠ABC=90°,∴∠HBC+∠CBN=∠ABN+∠CBN,∴∠HBC=∠ABN,∵BH⊥BN,AN⊥CM,∴∠BHC+∠CNB=∠ANB+∠CBN,∴∠BHC=∠ANB,在△ABN和△CBH中,,∴△ABN≌△CBH(AAS),∴BH=BN,CH=AN,∴△BHN为等腰直角三角形,∴HN=BN,又∵HN=HC+CN=AN+CN,∴AN+CN=BN,∴.【点睛】本题考查了旋转的性质,等腰直角三角形的判定性质,全等三角形的判定与性质等知识,较为综合,关键在于作辅助线构造全等三角形.22、答案见解析.【解析】试题分析:根据题意,从中任选两个作为条件,另一个作为结论构成一个命题,根据平行线的判定和性质及对顶角相等进行证明.试题解析:解:已知:∠1=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论