




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第53讲事件的独立性、条件概率和全概率公式(精讲)题型目录一览①事件的相互独立性②条件概率③全概率公式④贝叶斯公式一、知识点梳理一、知识点梳理一、条件概率1.定义:一般地,设SKIPIF1<0,SKIPIF1<0为两个事件,且SKIPIF1<0,称SKIPIF1<0为在事件SKIPIF1<0发生的条件下,事件SKIPIF1<0发生的条件概率.注:(1)条件概率SKIPIF1<0中“SKIPIF1<0”后面就是条件;(2)若SKIPIF1<0,表示条件SKIPIF1<0不可能发生,此时用条件概率公式计算SKIPIF1<0就没有意义了,所以条件概率计算必须在SKIPIF1<0的情况下进行.2.性质(1)条件概率具有概率的性质,任何事件的条件概率都在SKIPIF1<0和1之间,即SKIPIF1<0.(2)必然事件的条件概率为1,不可能事件的条件概率为SKIPIF1<0.(3)如果SKIPIF1<0与SKIPIF1<0互斥,则SKIPIF1<0.注:已知SKIPIF1<0发生,在此条件下SKIPIF1<0发生,相当于SKIPIF1<0发生,要求SKIPIF1<0,相当于把SKIPIF1<0看作新的基本事件空间计算SKIPIF1<0发生的概率,即SKIPIF1<0.二、相互独立与条件概率的关系1.相互独立事件的概念及性质(1)相互独立事件的概念对于两个事件SKIPIF1<0,SKIPIF1<0,如果SKIPIF1<0,则意味着事件SKIPIF1<0的发生不影响事件SKIPIF1<0发生的概率.设SKIPIF1<0,根据条件概率的计算公式,SKIPIF1<0,从而SKIPIF1<0.由此我们可得:设SKIPIF1<0,SKIPIF1<0为两个事件,若SKIPIF1<0,则称事件SKIPIF1<0与事件SKIPIF1<0相互独立.(2)概率的乘法公式由条件概率的定义,对于任意两个事件SKIPIF1<0与SKIPIF1<0,若SKIPIF1<0,则SKIPIF1<0.我们称上式为概率的乘法公式.(3)相互独立事件的性质如果事件SKIPIF1<0,SKIPIF1<0互相独立,那么SKIPIF1<0与SKIPIF1<0,SKIPIF1<0与SKIPIF1<0,SKIPIF1<0与SKIPIF1<0也都相互独立.(4)两个事件的相互独立性的推广两个事件的相互独立性可以推广到SKIPIF1<0个事件的相互独立性,即若事件SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0相互独立,则这SKIPIF1<0个事件同时发生的概率SKIPIF1<0.2.事件的独立性(1)事件SKIPIF1<0与SKIPIF1<0相互独立的充要条件是SKIPIF1<0.(2)当SKIPIF1<0时,SKIPIF1<0与SKIPIF1<0独立的充要条件是SKIPIF1<0.(3)如果SKIPIF1<0,SKIPIF1<0与SKIPIF1<0独立,则SKIPIF1<0成立.三、全概率公式1.全概率公式(1)SKIPIF1<0;(2)定理SKIPIF1<0若样本空间SKIPIF1<0中的事件SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0满足:①任意两个事件均互斥,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0,SKIPIF1<0.则对SKIPIF1<0中的任意事件SKIPIF1<0,都有SKIPIF1<0,且SKIPIF1<0.2.贝叶斯公式(1)一般地,当SKIPIF1<0且SKIPIF1<0时,有SKIPIF1<0(2)定理SKIPIF1<0若样本空间SKIPIF1<0中的事件SKIPIF1<0满足:①任意两个事件均互斥,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0,SKIPIF1<0.则对SKIPIF1<0中的任意概率非零的事件SKIPIF1<0,都有SKIPIF1<0,且SKIPIF1<0注:贝叶斯公式体现了SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0之间的关系,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.二、题型分类精讲二、题型分类精讲题型一事件的相互独立性策略方法1.判断事件是否相互独立的方法(1)定义法:事件SKIPIF1<0,SKIPIF1<0相互独立⇔SKIPIF1<0.(2)由事件本身的性质直接判定两个事件发生是否相互影响.(3)条件概率法:当SKIPIF1<0时,可用SKIPIF1<0判断.2.求相互独立事件同时发生的概率的步骤(1)首先确定各事件之间是相互独立的.(2)求出每个事件的概率,再求积.注:使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的.【典例1】(单选题)将一颗骰子先后郑两次,甲表示事件“第一次向上点数为1”,乙表示事件“第二次向上点数为2”,丙表示事件“两次向上点数之和为8”,丁表示事件“两次向上点数之和为7”,则(
)A.甲与丙相互独立 B.甲与丁相互独立C.乙与丙相互独立 D.丙与丁相互独立故选:B【典例2】(单选题)如图,三个元件SKIPIF1<0,SKIPIF1<0,SKIPIF1<0正常工作的概率分别为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,将它们中某两个元件并联后再和第三个元件串联接入电路,在如图的电路中,电路正常工作的概率是(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【题型训练】一、单选题1.从甲口袋内摸出一个白球的概率是SKIPIF1<0,从乙口袋内摸出一个白球的概率是SKIPIF1<0,从两个口袋内各摸1个球,那么概率为SKIPIF1<0的事件是(
)A.两个都不是白球 B.两个不全是白球C.两个都是白球 D.两个球中恰好有一个白球2.某次乒乓球单打比赛在甲、乙两人之间进行.比赛采取三局两胜制,即先胜两局的一方获得比赛的胜利,比赛结束.根据以往的数据分析,每局比赛甲胜出的概率都为SKIPIF1<0,比赛不设平局,各局比赛的胜负互不影响.这次比赛甲获胜的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.有6个相同的球,分别标有数字1,2,3,4,5,6.从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”.丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立 B.甲与丁相互独立C.乙与丙不相互独立 D.丙与丁相互独立4.一个正八面体,八个面分别标以数字1到8,任意抛掷一次这个八面体,观察它与地面接触的面上的数字,得到样本空间SKIPIF1<0,设SKIPIF1<0,SKIPIF1<0,则(
)A.SKIPIF1<0与SKIPIF1<0互斥 B.SKIPIF1<0与SKIPIF1<0相互对立C.SKIPIF1<0与SKIPIF1<0相互独立 D.SKIPIF1<05.现有同副牌中的5张数字不同的扑克牌,其中红桃1张、黑桃2张、梅花2张,从中任取一张,看后放回,再任取一张.甲表示事件“第一次取得黑桃扑克牌”,乙表示事件“第二次取得梅花扑克牌”,丙表示事件“两次取得相同花色的扑克牌”,丁表示事件“两次取得不同花色的扑克牌”,则(
)A.乙与丙相互独立 B.乙与丁相互独立C.甲与丙相互独立 D.甲与乙相互独立6.同时掷红、蓝两枚质地均匀的骰子,事件A表示“两枚骰子的点数之和为5”,事件B表示“红色骰子的点数是偶数”,事件C表示“两枚骰子的点数相同”,事件D表示“至少一枚骰子的点数是奇数”.则下列说法中正确的是(
)①A与C互斥
②B与D对立
③A与D相互独立
④B与C相互独立A.①③ B.①④ C.②③ D.②④7.某中学运动会上有一个项目的比赛规则是:比赛分两个阶段,第一阶段,比赛双方各出5人,一对一进行比赛,共进行5局比赛,每局比赛获胜的一方得1分,负方得0分;第二阶段,比赛双方各出4人,二对二进行比赛,共进行2局比赛,每局比赛获胜的一方得2分,负方得0分.先得到5分及以上的一方裁定为本次比赛的获胜方,比赛结束.若甲、乙两个班进行比赛,在第一阶段比赛中,每局比赛双方获胜的概率都是SKIPIF1<0,在第二阶段比赛中,每局比赛甲班获胜的概率都是SKIPIF1<0,每局比赛的结果互不影响,则甲班经过7局比赛获胜的概率是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.同时抛掷一红一绿两枚质地均匀的骰子,用SKIPIF1<0表示红色骰子的点数,SKIPIF1<0表示绿色骰子的点数,设事件SKIPIF1<0“SKIPIF1<0”,事件SKIPIF1<0“SKIPIF1<0为奇数”,事件SKIPIF1<0“SKIPIF1<0”,则下列结论正确的是(
)A.A与SKIPIF1<0对立 B.SKIPIF1<0C.A与SKIPIF1<0相互独立 D.SKIPIF1<0与SKIPIF1<0相互独立二、多选题9.甲、乙两个口袋中装有除了编号不同以外其余完全相同的号签.其中,甲袋中有编号为SKIPIF1<0的三个号签;乙袋有编号为SKIPIF1<0的六个号签.现从甲、乙两袋中各抽取1个号签,从甲、乙两袋抽取号签的过程互不影响.记事件A:从甲袋中抽取号签1;事件B:从乙袋中抽取号签6;事件C:抽取的两个号签和为3;事件D:抽取的两个号签编号不同.则下列选项中,正确的是(
)A.SKIPIF1<0B.SKIPIF1<0C.事件SKIPIF1<0与事件C相互独立D.事件A与事件D相互独立10.抛掷一红一绿两枚质地均匀的骰子,记下骰子朝上一面的点数,用x表示红色骰子的点数,y表示绿色骰子的点数,定义事件:A=“SKIPIF1<0”,B=“SKIPIF1<0为奇数”,C=“SKIPIF1<0”,则下列结论正确的是(
)A.事件A与B互斥B.事件A与B是对立事件C.事件B与C相互独立D.事件A与C相互独立11.下列对各事件发生的概率的判断正确的是()A.一个袋子中装有2件正品和2件次品,任取2件,“两件都是正品”与“至少有1件是次品”是对立事件;B.三人独立地破译一份密码,他们能单独译出的概率分别为SKIPIF1<0,假设他们破译密码是相互独立的,则此密码被破译的概率为SKIPIF1<0C.甲袋中有除颜色外其他均相同的8个白球,4个红球,乙袋中有除颜色外其他均相同的6个白球,6个红球,从甲、乙两袋中各任取一个球,则取到同色球的概率为SKIPIF1<0D.设两个独立事件A和B都不发生的概率为SKIPIF1<0,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是SKIPIF1<012.先后两次抛掷一枚质地均匀的骰子,得到向上的点数分别为x,y,设事件SKIPIF1<0“SKIPIF1<0”,事件SKIPIF1<0“SKIPIF1<0”,事件SKIPIF1<0“SKIPIF1<0为奇数”,则(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0与SKIPIF1<0相互独立 D.SKIPIF1<0与SKIPIF1<0相互独立三、填空题13.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0人进行射击比赛,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0一次射击命中SKIPIF1<0环的概率分别为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若他们每人射击一次,则至少有SKIPIF1<0人命中SKIPIF1<0环的概率为.14.若SKIPIF1<0两个事件相互独立,且SKIPIF1<0,则SKIPIF1<0.15.某公司招新面试中有3道难度相当的题目,小明答对每道题目的概率都是0.7.若每位面试者共有三次机会,一旦某次答对抽到的题目,则面试通过,否则就一直抽题到第3次为止,则小明最终通过面试的概率为.16.某高中的独孤与无极两支排球队在校运会中采用五局三胜制(有球队先胜三局则比赛结束).第一局独孤队获胜概率为SKIPIF1<0,独孤队发挥受情绪影响较大,若前一局获胜,下一局获胜概率增加SKIPIF1<0,反之降低SKIPIF1<0.则独孤队不超过四局获胜的概率为.17.某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响,则这名同学得300分的概率为.18.同时掷红、蓝两枚质地均匀的骰子,事件A表示“两枚骰子的点数之和为5”,事件B表示“红色骰子的点数是偶数”,事件C表示“两枚骰子的点数相同”,事件D表示“至少一枚骰子的点数是奇数”.①A与C互斥
②B与D对立
③A与D相互独立
④B与C相互独立则上述说法中正确的为.四、解答题19.为普及法律知识,弘扬宪法精神,某校教师举行法律知识竞赛.比赛共分为两轮,即初赛和决赛,决赛通过后将代表学校参加市级比赛.在初赛中,已知甲教师晋级决赛的概率为SKIPIF1<0,乙教师晋级决赛的概率为SKIPIF1<0.若甲、乙能进入决赛,在决赛中甲、乙两人能胜出的概率分别为SKIPIF1<0和SKIPIF1<0.假设甲、乙初赛是否晋级和在决赛中能否胜出互不影响.(1)若甲、乙有且只有一人能晋级决赛的概率为SKIPIF1<0,求SKIPIF1<0的值;(2)在(1)的条件下,求甲、乙两人中有且只有一人能参加市级比赛的概率.20.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且各轮问题能否回答正确互不影响.求:(1)该选手进入第三轮考核才被淘汰的概率;(2)该选手至多进入第二轮考核的概率.21.甲、乙两位同学参加某项知识竞赛,比赛共有两道题目,已知甲同学答对每道题的概率都为SKIPIF1<0,乙同学答对每道题的概率都为SKIPIF1<0,且在比赛中每人各题答题结果互不影响.已知同一道题甲、乙至少一人答对的概率为SKIPIF1<0,两人都答对的概率为SKIPIF1<0.(1)求SKIPIF1<0和SKIPIF1<0的值;(2)求本次知识竞赛甲同学答对的题数小于乙同学答对的题数的概率.22.一题多解是由多种途径获得同一数学问题的最终结论,一题多解不但达到了解题的目标要求,而且让学生的思维得以拓展,不受固定思维模式的束缚.学生多角度、多方位地去思考解题的方案,让解题增添了新颖性和趣味性,并在解题中解放了解题思维模式,使得枯燥的数学解题更加丰富而多彩.假设某题共存在4种常规解法,已知小红使用解法一、二、三、四答对的概率分别为SKIPIF1<0,且各种方法能否答对互不影响,小红使用四种解法全部答对的概率为SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求小红不能正确解答本题的概率;(3)求小红使用四种解法解题,其中有三种解法答对的概率.23.在2023年成都大运会的射击比赛中,中国队取得了优异的比赛成绩,激发了全国人民对射击运动的热情.某市举行了一场射击表演赛,规定如下:表演赛由甲、乙两位选手进行,每次只能有一位选手射击,用抽签的方式确定第一次射击的人选,甲、乙两人被抽到的概率相等;若中靶,则此人继续射击,若未中靶,则换另一人射击.已知甲每次中靶的概率为SKIPIF1<0,乙每次中靶的概率为SKIPIF1<0,每次射击结果相互独立.(1)若每次中靶得10分,未中靶不得分,求3次射击后甲得20分的概率;(2)求第n次射击的人是乙的概率.题型二条件概率策略方法1.判断所求概率为条件概率的主要依据是题目中的“已知”“在…前提下(条件下)”等字眼.但已知事件的发生影响了所求事件的概率,也认为是条件概率问题.运用P(AB)=P(B|A)·P(A),求条件概率的关键是求出P(A)和P(AB),要注意结合题目的具体情况进行分析.2.求条件概率的两种方法(1)利用定义,分别求P(A)和P(AB),得SKIPIF1<0,这是求条件概率的通法.(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n(AB),得SKIPIF1<0.【典例1】(单选题)连续抛掷一枚质地均匀的骰子3次,观察向上的点数.在第1次出现奇数的条件下,3次出现的点数之积为偶数的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【题型训练】一、单选题1.核酸检测是目前确认新型冠状病毒感染最可靠的依据.经大量病例调查发现,试剂盒的质量、抽取标本的部位和取得的标本数量,对检测结果的准确性有一定影响.已知国外某地新冠病毒感染率为0.5%,在感染新冠病毒的条件下,标本检出阳性的概率为99%.若该地全员参加核酸检测,则该地某市民感染新冠病毒且标本检出阳性的概率为(
)A.0.495% B.0.9405% C.0.99% D.0.9995%2.某高铁动车检修基地库房内有SKIPIF1<0共5条并行的停车轨道线,每条轨道线只能停一列车,现有动车SKIPIF1<0、高铁SKIPIF1<0共五列车入库检修,若已知两列动车安排在相邻轨道,则动车SKIPIF1<0停放在SKIPIF1<0道的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.有首歌道“大理三月好风光,蝴蝶泉边好梳妆”,近年来大理州一直致力开发旅游事业,吸引着大批的游客前往大理旅游.现有甲、乙两位游客慕名来到大理,准备从苍山、洱海、大理古城、崇圣寺三塔、蝴蝶泉五个景点中随机选择一个景点游玩,记事件SKIPIF1<0为“甲和乙至少一人选择蝴蝶泉”,事件SKIPIF1<0为“甲和乙选择的景点不同”,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<04.小明先后投掷两枚骰子,已知有一次投掷时朝上的点数为偶数,则两次投掷时至少有一次朝上的点数为4的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.2023年8月31日贵南高铁实现全线贯通运营,我国西南和华南地区新增一条交通大动脉,黔桂两地间交通出行更加便捷、西南与华南地区联系将更加紧密.贵南高铁线路全长482公里,设计时速350公里,南宁东到贵阳东旅行时间由原来的5个多小时缩短至最快2小时53分.贵阳某调研机构调查了一个来自南宁的旅行团对贵阳两种特色小吃肠旺面和丝娃娃的喜爱情况,了解到其中有SKIPIF1<0的人喜欢吃肠旺面,有SKIPIF1<0的人喜欢吃丝娃娃,还有SKIPIF1<0的人既不喜欢吃肠旺面也不喜欢吃丝娃娃.在已知该旅行团一游客喜欢吃肠旺面的条件下,他还喜欢吃丝娃娃的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.箱子中装有2个白球和2个黑球,两人先后从中有放回地随机摸取1个球,已知其中一人摸到的是白球,则另外一人摸到的也是白球的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球(白球与红球大小、形状、质地相同),现随机从1号箱中取出一球放入2号箱,再从2号箱中随机取出一球,则两次都取到红球的概率是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.一个不透明的袋中装有4个红球,4个黑球,2个白球,这些球除颜色外,其他完全相同,现从袋中一次性随机抽取3个球,事件A:“这3个球的颜色各不相同”,事件B:“这3个球中至少有1个黑球”,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.湖南第二届旅游发展大会于2023年9月15日至17日在郴州举行,为让广大学生知晓郴州,热爱郴州,亲身感受“走遍五大洲,最美有郴州”绿色生态研学,现有甲,乙两所学校从万华岩中小学生研学实践基地,王仙岭旅游风景区,雄鹰户外基地三条线路中随机选择一条线路去研学,记事件A为“甲和乙至少有一所学校选择万华岩中小学生研学实践基地”,事件B为“甲和乙选择研学线路不同”,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.某市计划开展“学两会,争当新时代先锋”知识竞赛活动.某单位初步推选出3名党员和5名民主党派人士,并从中随机选取4人组成代表队参赛.在代表队中既有党员又有民主党派人士的条件下,党员甲被选中的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<011.将三枚骰子各掷一次,设事件SKIPIF1<0为“三个点数都不相同”,事件SKIPIF1<0为“出现一个6点”,则概率SKIPIF1<0的值为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012.甲、乙两位学生在学校组织的课后服务活动中,准备从①②③④⑤5个项目中分别各自随机选择其中一项,记事件SKIPIF1<0:甲和乙选择的活动各不同,事件SKIPIF1<0:甲和乙恰好一人选择①,则SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013.甲盒中有2个红球和1个黄球,乙盒中有1个红球和2个黄球,丙盒中有1个红球和1个黄球.从甲盒中随机抽取一个球放入乙盒中,搅拌均匀,然后从乙盒中随机抽取一个球放入丙盒中,搅拌均匀后,再从丙盒中抽取一个球,则从丙盒中抽到的是红球的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多选题14.某校高三SKIPIF1<0班有学生SKIPIF1<0人,其中共青团员SKIPIF1<0人.全班平均分成SKIPIF1<0个小组,其中第一组有共青团员SKIPIF1<0人.从该班任选一人作为学生代表,下列说法错误的是(
)A.选到的是第一组的学生的概率为SKIPIF1<0B.选到的是第一组的学生的概率为SKIPIF1<0C.已知选到的是共青团员,则他是第一组学生的概率为SKIPIF1<0D.已知选到的是共青团员,则他是第一组学生的概率为SKIPIF1<015.若SKIPIF1<0、SKIPIF1<0分别为随机事件SKIPIF1<0、SKIPIF1<0的对立事件,SKIPIF1<0,SKIPIF1<0,则下列结论正确的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.若SKIPIF1<0,则SKIPIF1<016.某校开展羽毛球比赛,甲组有选手6名,其中3名男生,3名女生;乙组有选手5名,其中3名男生,2名女生.现从甲组随机抽取一人加入乙组,再从乙组随机抽取一人,A表示事件“从甲组随机抽取的一人是女生”,SKIPIF1<0表示事件“从乙组随机抽取的一人是男生”,则(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<017.给定事件SKIPIF1<0,且SKIPIF1<0,则下列选项正确的是(
)A.若SKIPIF1<0,则A,B互为对立事件B.若SKIPIF1<0,SKIPIF1<0且A,B互斥,则A,B不可能相互独立C.SKIPIF1<0D.若A,B为相互独立事件且SKIPIF1<0,则SKIPIF1<018.盒子中共有4只黑球,2只白球,现从中不放回地每次任取一球,连取两次,则下列选项正确的是(
)A.第一次取到黑球的概率为SKIPIF1<0B.事件“第一次取到黑球”和“第一次取到白球”互斥不对立C.在第一次取到白球的条件下,第二次取到黑球的概率为SKIPIF1<0D.第二次取到黑球的概率为SKIPIF1<019.设SKIPIF1<0,SKIPIF1<0是一个随机试验中的两个事件,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则下列结论中正确的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0三、填空题20.袋中有10个外形相同的球,其中5个白球,3个黑球,2个红球,从中任意取出一球,已知它不是白球,则它是黑球的概率是.21.已知事件SKIPIF1<0发生的概率为SKIPIF1<0,事件SKIPIF1<0发生的概率为SKIPIF1<0,若在事件SKIPIF1<0发生的条件下,事件SKIPIF1<0发生的概率为SKIPIF1<0,则在事件SKIPIF1<0发生的条件下,事件SKIPIF1<0发生的概率为.22.从SKIPIF1<0这SKIPIF1<0个连续正整数中不放回地任取2个数,设“第一次取到的是质数”为事件A,又设“第二次取到的不是质数”为事件SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0的所有可能值的和为.23.现有10张奖券,有且仅有2张为有奖奖券,甲、乙两人轮流依次不放回地抽取奖券,甲先抽取,然后乙再抽取为一个轮次.则在第一轮甲、乙都未中奖的条件下,第二轮甲、乙都中奖的概率为.24.当前,我国各年龄段青少年的近视呈现发病年龄早、进展快、程度深的趋势,其中很大一部分是青少年长时间玩手机导致的.据调查,贵阳市某高中学生大约0.3的人近视,而该校大约有0.4的学生每天玩手机超过2.5小时,这些人的近视率约为0.6.现从该校近视的学生中任意调查一名学生,则他每天玩手机超过2.5小时的概率为.25.1889年7月由恩格斯领导的第二国际在巴黎举行代表大会,会议上宣布将五月一日定为国际劳动节.五一劳动节某单位安排甲、乙、丙3人在5天假期值班,每天只需1人值班,且每人至少值班1天,已知甲在五一假期期间值班2天,则甲连续值班的概率是.26.五一长假期间,某单位安排SKIPIF1<0这3人在5天假期值班,每天只需1人值班,且每人至少值班1天,已知SKIPIF1<0在五一长假期间值班2天,则SKIPIF1<0连续值班的概率是.27.现有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机抽取两瓶,若取出的两瓶中至少有一瓶是蓝色,则另一瓶是红色或黑色的概率为.题型三全概率公式策略方法全概率公式SKIPIF1<0在解题中体现了“化整为零、各个击破”的转化思想,可将较为复杂的概率计算分解为一些较为容易的情况分别进行考虑.【典例1】(单选题)在2023亚运会中,中国女子篮球队表现突出,卫冕亚运会冠军,该队某球员被称为3分球投手,在比赛中,她3分球投中的概率为SKIPIF1<0,非3分球投中的概率为SKIPIF1<0,且她每次投球投3分球的概率为SKIPIF1<0,则该球员投一次球得分的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【题型训练】一、单选题1.设某医院仓库中有10盒同样规格的SKIPIF1<0光片,已知其中有5盒、3盒、2盒依次是甲厂、乙厂、丙厂生产的.且甲、乙、丙三厂生产该种SKIPIF1<0光片的次品率依次为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,现从这10盒中任取一盒,再从这盒中任取一张SKIPIF1<0光片,则取得的SKIPIF1<0光片是次品的概率为(
)A.0.08 B.0.1 C.0.15 D.0.22.甲、乙两个袋子中各装有5个大小相同的小球,其中甲袋中有2个红球,2个白球和1个黑球,乙袋中有3个红球,1个白球和1个黑球,先从甲袋中随机取出一球放入乙袋,再从乙袋中随机取出一球.若用事件SKIPIF1<0和SKIPIF1<0分别表示从甲袋中取出的球是红球,白球和黑球,用事件SKIPIF1<0表示从乙袋中取出的球是红球,则SKIPIF1<0=(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.现有甲乙两个箱子,分别装有除颜色外其它都相同的黑色和白色两种球,甲箱装有2个白球3个黑球,乙箱有3个白球2个黑球,先从甲箱随机取一个球放入乙箱,再从乙箱随机取一个球是白球的概率是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.长时间玩手机可能影响视力.据调查,某校学生大约SKIPIF1<0的人近视,而该校大约有SKIPIF1<0的学生每天玩手机超过1小时,这些人的近视率约为SKIPIF1<0,现从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.随着经济的不断发展,城市的交通问题越来越严重,为倡导绿色出行,某公司员工小明选择了三种出行方式.已知他每天上班选择步行、骑共享单车和乘坐地铁的概率分别为0.2、0.3、0.5.并且小明步行上班不迟到的概率为0.91,骑共享单车上班不迟到的概率为0.92,乘坐地铁上班不迟到的概率为0.93,则某天上班小明迟到的概率是(
)A.0.24 B.0.14 C.0.067 D.0.0776.设A,B为两个事件,已知SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.重庆八中味园食堂午餐情况监测数据表明,小唐同学周一去味园的概率为SKIPIF1<0,周二去味园的概率为SKIPIF1<0,且小唐周一不去味园的条件下周二去味园的概率是周一去味园的条件下周二去味园的概率的2倍,则小唐同学周一、周二都去味园的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.已知有两箱书,第一箱中有3本故事书,2本科技书;第二箱中有2本故事书,3本科技书.随机选取一箱,再从该箱中随机取书两次,每次任取一本,做不放回抽样,则在第一次取到科技书的条件下,第二次取到的也是科技书的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多选题9.某市场供应多种品牌的N95口罩,相应的市场占有率和优质率的信息如表:在该市场中随机买一种品牌的SKIPIF1<0口罩,记SKIPIF1<0表示买到的口罩分别为甲品牌、乙品牌、其他品牌,记SKIPIF1<0表示买到的口罩是优质品,则()品牌甲乙其他市场占有率SKIPIF1<0SKIPIF1<0SKIPIF1<0优质率SKIPIF1<0SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<010.甲盒中有3个红球,2个白球;乙盒中有2个红球,3个白球.先从甲盒中随机取出一球放入乙盒,用事件SKIPIF1<0表示“从甲盒中取出的是红球”,用事件SKIPIF1<0表示“从甲盒中取出的是白球”;再从乙盒中随机取出一球,用事件SKIPIF1<0表示“从乙盒中取出的是红球”,则(
)A.事件SKIPIF1<0与事件SKIPIF1<0是对立事件 B.事件SKIPIF1<0与事件SKIPIF1<0是独立事件C.SKIPIF1<0 D.SKIPIF1<011.某市场供应多种品牌的N95口罩,相应的市场占有率和优质率的信息如下表:品牌甲乙其他市场占有率SKIPIF1<0SKIPIF1<0SKIPIF1<0优质率SKIPIF1<0SKIPIF1<0SKIPIF1<0在该市场中随机买一种品牌的SKIPIF1<0口罩,记SKIPIF1<0表示买到的口罩分别为甲品牌、乙品牌、其他品牌,记SKIPIF1<0表示买到的口罩是优质品,则(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<012.有3台机器生产同一种零件.第1台机器加工的次品率为10%,第2,3台机器加工的次品率均为8%,加工出来的零件混放在一起.已知三台机器生产的零件数分别占总数的20%,35%,45%,则下列选项正确的有(
)A.任取一个零件是第一台机器生产出来的次品概率为0.02B.任取一个零件是次品的概率为0.084C.如果取到的零件是次品,且是第2台机器生产的概率为SKIPIF1<0D.如果取到的零件是次品,且是第3台机器生产的概率为SKIPIF1<0三、填空题13.某车企为了更好地设计开发新车型,统计了近期购车的车主性别与购车种类(新能源车或者燃油车)的情况,其中新能源车占销售量的SKIPIF1<0,男性占近期购车车主总数的SKIPIF1<0,女性购车车主有SKIPIF1<0购买了新能源车,根据以上信息,则男性购车时,选择购买新能源车的概率是.14.浙江省高考实行“七选三”选科模式,赋予了学生充分的自由选择权.甲、乙、丙三所学校分别有75%,60%,50%的学生选了物理,这三所学校的学生数之比为SKIPIF1<0,现从这三所学校中随机选取一个学生,则这个学生选了物理的概率为.15.现有两个罐子,1号罐子中装有3个红球、2个黑球,2号罐子中装有4个红球、2个黑球.现先从1号罐子中随机取出一个球放入2号罐子,再从2号罐子中取一个球,则从2号罐子中取出的球是红球的概率为.16.某学校有SKIPIF1<0,SKIPIF1<0两家餐厅,某同学第1天等可能地选择一家餐厅用餐,如果第1天去SKIPIF1<0餐厅,那么第2天去SKIPIF1<0餐厅的概率为0.8,如果第一天去SKIPIF1<0餐厅,那么第2天去SKIPIF1<0餐厅的概率为0.4,则该同学第2天去SKIPIF1<0餐厅的概率为.17.已知某地居民中青少年、中年人、老年人暑期去广西桂林旅游的概率分别为0.1,0.2,0.15,且该地居民青少年、中年人、老年人的人数比例为4:3:3,若从该地居民(仅指青少年、中年人、老年人)中任选一人,则此人暑期去桂林旅游的概率为.四、解答题18.SKIPIF1<0年是共青团建团一百周年,为了铭记历史、缅怀先烈、增强爱国主义情怀,某学校组织了共青团团史知识竞赛活动.在最后一轮晋级比赛中,甲、乙、丙三名同学回答一道有关团史的问题,每个人回答是否正确互不影响.已知甲回答正确的概率为SKIPIF1<0,甲、丙两人都回答正确的概率是SKIPIF1<0,乙、丙两人都回答正确的概率是SKIPIF1<0.(1)若规定三名同学都需要回答这个问题,求甲、乙、丙三名同学中至少SKIPIF1<0人回答正确的概率:(2)若规定三名同学需要抢答这道题,已知甲抢到答题机会的概率为SKIPIF1<0,乙抢到答题机会的概率为SKIPIF1<0,丙抢到的概率为SKIPIF1<0,求这个问题回答正确的概率.19.为了考察学生对高中数学知识的掌握程度,准备了甲、乙两个不透明纸箱.其中,甲箱有2道概念叙述题,2道计算题;乙纸箱中有2道概念叙述题,3道计算题(所有题目均不相同).现有A,B两个同学来抽题回答;每个同学在甲或乙两个纸箱中逐个随机抽取两道题作答.每个同学先抽取1道题作答,答完题目后不放回,再抽取一道题作答(不在题目上作答).两道题答题结束后,再将这两道题目放回原纸箱.(1)如果A同学从甲箱中抽取两道题,则第二题抽到的是概念叙述题的概率;(2)如果A同学从甲箱中抽取两道题,解答完后,误把题目放到了乙箱中.B同学接着抽取题目回答,若他从乙箱中抽取两道题目,求第一个题目抽取概念叙述题的概率.20.莆田是历史文化名城.著名的“莆田二十四景”是游客的争相打卡点,莆田文旅局调查打卡二十四景游客,发现75%的人至少打卡两个景点.为提升城市形象,莆田文旅局为大家准备了4种礼物,分别是莆田文化金属书签、莆阳古厝徽章、广化寺祈福香包、湄洲艺术摆件.若打卡二十四景游客至少打卡两个景点,则有两次抽奖机会;若只打卡一个景点,则有一次抽奖机会.每次抽奖可随机获得4种礼物中的1种礼物.假设打卡二十四景游客打卡景点情况相互独立.(1)从全体打卡二十四景游客中随机抽取3人,求3人抽奖总次数不低于4次的概率;(2)任选一位打卡二十四景游客,求此游客抽中广化寺祈福香包的概率.21.某大学生创客实践基地,甲、乙两个团队生产同种创新产品,现对其生产的产品进行质量检验.(1)为测试其生产水准,从甲、乙生产的产品中各抽检15个样本,评估结果如图:现将“一、二、三等”视为产品质量合格,其余为产品质量不合格,请完善SKIPIF1<0列联表,并说明是否有95%的把握认为“产品质量”与“生产团队”有关;甲乙总和合格不合格总和151530附:SKIPIF1<0,SKIPIF1<0.SKIPIF1<00.150.100.050.0250.0100.001SKIPIF1<02.0722.7063.8415.0246.63510.828(2)将甲乙生产的产品各自进行包装,每5个产品包装为一袋,现从中抽取一袋检测(假定抽取的这袋产品来自甲生产的概率为SKIPIF1<0,来自乙生产的概率为SKIPIF1<0),检测结果显示这袋产品中恰有4件合格品,求该袋产品由甲团队生产的概率(以(1)中各自产品的合格频率代替各自产品的合格概率).22.双淘汰赛制是一种竞赛形式,比赛一般分两个组进行,即胜者组与负者组.在第一轮比赛后,获胜者编入胜者组,失败者编入负者组继续比赛,之后的每一轮,在负者组中的失败者将被淘汰;胜者组的情况也类似,只是失败者仅被淘汰出胜者组降入负者组,只有在负者组中再次失败后才会被淘汰出整个比赛.A、B、C、D四人参加的双淘汰赛制的流程如图所示,其中第6场比赛为决赛.
(1)假设四人实力旗鼓相当,即各比赛每人的胜率均为50%,求:①A获得季军的概率;②D成为亚军的概率;(2)若A的实力出类拔萃,有4人参加的比赛其胜率均为75%,其余三人实力旗鼓相当,求D进入决赛且先前与对手已有过招的概率.题型四贝叶斯公式策略方法1.利用贝叶斯公式求概率的步骤第一步:利用全概率公式计算SKIPIF1<0,即SKIPIF1<0;第二步:计算SKIPIF1<0,可利用SKIPIF1<0求解;第三步:代入SKIPIF1<0求解.2.贝叶斯概率公式反映了条件概率SKIPIF1<0,全概率公式SKIPIF1<0及乘法公式SKIPIF1<0之间的关系,即SKIPIF1<0.【典例1】(单选题)某卡车为乡村小学运送书籍,共装有SKIPIF1<0个纸箱,其中SKIPIF1<0箱英语书、SKIPIF1<0箱数学书.到目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下SKIPIF1<0箱中任意打开两箱,结果都是英语书,则丢失的一箱也是英语书的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【题型训练】一、单选题1.设有5个袋子中放有白球,黑球,其中1号袋中白球占SKIPIF1<0,另外2,3,4,5号4个袋子中白球都占SKIPIF1<0,今从中随机取1个袋子,从所取的袋子中随机取1个球,结果是白球,则这个球是来自1号袋子中的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.“狼来了”的故事大家小时候应该都听说过:小孩第一次喊“狼来了”,大家信了,但去了之后发现没有狼;第二次喊“狼来了”,大家又信了,但去了之后又发现没有狼;第三次狼真的来了,但是这个小孩再喊狼来了就没人信了.从数学的角度解释这一变化,假设小孩是诚实的,则他出于某种特殊的原因说谎的概率为SKIPIF1<0;小孩是不诚实的,则他说谎的概率是SKIPIF1<0.最初人们不知道这个小孩诚实与否,所以在大家心目中每个小孩是诚实的概率是SKIPIF1<0.已知第一次他说谎了,那么他是诚实的小孩的概率是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.某货车为某书店运送书籍,共SKIPIF1<0箱,其中SKIPIF1<0箱语文书、SKIPIF1<0箱数学书、SKIPIF1<0箱英语书.到达目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下的SKIPIF1<0箱书中随机打开SKIPIF1<0箱,结果是SKIPIF1<0箱语文书、SKIPIF1<0箱数学书,则丢失的一箱是英语书的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.某卡车为乡村小学运送书籍,共装有SKIPIF1<0个纸箱,其中SKIPIF1<0箱英语书、SKIPIF1<0箱数学书.到目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下SKIPIF1<0箱中任意打开两箱,结果都是英语书,则丢失的一箱也是英语书的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.托马斯·贝叶斯(ThomasBayes)在研究“逆向概率”的问题中得到了一个公式:SKIPIF1<0,这个公式被称为贝叶斯公式(贝叶斯定理),其中SKIPIF1<0称为SKIPIF1<0的全概率.假设甲袋中有3个白球和2个红球,乙袋中有2个白球和2个红球.现从甲袋中任取2个球放入乙袋,再从乙袋中任取2个球.已知从乙袋中取出的是2个白球,则从甲袋中取出的也是2个白球的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.根据某机构对失踪飞机的调查得知:失踪的飞机中有70%的后来被找到,在被找到的飞机中,有60%安装有紧急定位传送器,而未被找到的失踪飞机中,有90%未安装紧急定位传送器,紧急定位传送器是在飞机失事坠毁时发送信号,让搜救人员可以定位的装置.现有一架安装有紧急定位传送器的飞机失踪,则它被找到的概率为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多选题7.英国数学家贝叶斯在概率论研究方面成就显著,根据贝叶斯统计理论,随机事件A,B存在如下关系:SKIPIF1<0.某高校有甲、乙两家餐厅,王同学第一天去甲、乙两家餐厅就餐分别记为事件SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,第二天去甲、乙两家餐厅就餐分别记为事件SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,已知王同学每天按时到甲、乙两家餐厅中的一家就餐,则(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.某校开展“一带一路”知识竞赛,甲组有7名选手,其中5名男生,2名女生;乙组有7名选手,其中4名男生,3名女生.现从甲组随机抽取1人加入乙组,再从乙组随机抽取1人,SKIPIF1<0表示事件“从甲组抽取的是男生”,SKIPIF1<0表示事件“从甲组抽取的是女生”,B表示事件“从乙组抽取1名女生”,则下列结论正确的是(
)A.SKIPIF1<0,SKIPIF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国普通改性PVC密封条数据监测研究报告
- 2025至2031年中国纸箱装订扁丝行业投资前景及策略咨询研究报告
- 2025年中国无芯轮数据监测研究报告
- 2025年湖南省岳阳市中考二模地理试卷及答案
- 2025年中国斜式双锥混料机市场调查研究报告
- 2025年中国数字式倒车雷达数据监测报告
- 2025-2030年中国中高压输配电行业发展动态及投资战略研究预测研究报告
- 2025至2031年中国罐装熏衣草茶行业投资前景及策略咨询研究报告
- 肇庆市实验中学高中历史三:第课汉字与书法教案
- 商家带货主播合同协议
- 49-提高临边防护栏杆有效合格率(清泉建筑)
- 2025年新高考语文模拟考试试卷(五)
- 实习生补充协议范例模板
- 2025年高考数学基础知识篇(核心知识背记手册)
- 药品经营质量管理规范
- 专项24-正多边形与圆-重难点题型
- 通信工程勘察设计管理办法
- 数据库原理及应用教程(第5版) (微课版)课件 第4章 关系型数据库理论
- (完整文本版)日文履历书(文本テンプレート)
- 天津市建设工程安全生产标准化项目季度自评表
- DL∕T 1210-2013 火力发电厂自动发电控制性能测试验收规程
评论
0/150
提交评论