




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省毛坦厂中学高三3月第一次模拟考试数学试题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为()A. B. C. D.2.已知,函数在区间上恰有个极值点,则正实数的取值范围为()A. B. C. D.3.若圆锥轴截面面积为,母线与底面所成角为60°,则体积为()A. B. C. D.4.已知等差数列的前项和为,若,,则数列的公差为()A. B. C. D.5.已知函数,若则()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)6.在中,内角所对的边分别为,若依次成等差数列,则()A.依次成等差数列 B.依次成等差数列C.依次成等差数列 D.依次成等差数列7.在中,是的中点,,点在上且满足,则等于()A. B. C. D.8.已知数列的通项公式是,则()A.0 B.55 C.66 D.789.设复数,则=()A.1 B. C. D.10.“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为()A.56383 B.57171 C.59189 D.6124211.如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.12.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为()A. B. C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.设函数满足,且当时,又函数,则函数在上的零点个数为___________.14.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.15.边长为2的正方形经裁剪后留下如图所示的实线围成的部分,将所留部分折成一个正四棱锥.当该棱锥的体积取得最大值时,其底面棱长为________.16.函数在区间上的值域为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,.(1)求函数的单调递增区间;(2)的三个内角、、所对边分别为、、,若且,求面积的取值范围.18.(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,.求证:(1)平面;(2)平面平面.19.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若,求边上的高.20.(12分)如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.(1)若,求直线AP与平面所成角;(2)在线段上是否存在一个定点Q,使得对任意的实数m,都有,并证明你的结论.21.(12分)在平面直角坐标系中,,,且满足(1)求点的轨迹的方程;(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程.22.(10分)记函数的最小值为.(1)求的值;(2)若正数,,满足,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.【详解】设的中点为,连接,因此有,而,而平面,,因此有平面,所以动点的轨迹平面与正方体的内切球的交线.正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:因此有,设平面的法向量为,所以有,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.故选:C【点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.2、B【解析】
先利用向量数量积和三角恒等变换求出,函数在区间上恰有个极值点即为三个最值点,解出,,再建立不等式求出的范围,进而求得的范围.【详解】解:令,解得对称轴,,又函数在区间恰有个极值点,只需解得.故选:.【点睛】本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成或的形式;(2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围.3、D【解析】
设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【详解】设圆锥底面圆的半径为,由已知,,解得,所以圆锥的体积.故选:D【点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.4、D【解析】
根据等差数列公式直接计算得到答案.【详解】依题意,,故,故,故,故选:D.【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.5、C【解析】
利用导数求得在上递增,结合与图象,判断出的大小关系,由此比较出的大小关系.【详解】因为,所以在上单调递增;在同一坐标系中作与图象,,可得,故.故选:C【点睛】本小题主要考查利用导数研究函数的单调性,考查利用函数的单调性比较大小,考查数形结合的数学思想方法,属于中档题.6、C【解析】
由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.【详解】依次成等差数列,,正弦定理得,由余弦定理得,,即依次成等差数列,故选C.【点睛】本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.7、B【解析】
由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.【详解】解:∵M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足∴P是三角形ABC的重心∴又∵AM=1∴∴故选B.【点睛】判断P点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:或取得最小值③坐标法:P点坐标是三个顶点坐标的平均数.8、D【解析】
先分为奇数和偶数两种情况计算出的值,可进一步得到数列的通项公式,然后代入转化计算,再根据等差数列求和公式计算出结果.【详解】解:由题意得,当为奇数时,,当为偶数时,所以当为奇数时,;当为偶数时,,所以故选:D【点睛】此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.9、A【解析】
根据复数的除法运算,代入化简即可求解.【详解】复数,则故选:A.【点睛】本题考查了复数的除法运算与化简求值,属于基础题.10、C【解析】
根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前项和公式,可得结果.【详解】被5除余3且被7除余2的正整数构成首项为23,公差为的等差数列,记数列则令,解得.故该数列各项之和为.故选:C.【点睛】本题考查等差数列的应用,属基础题。11、A【解析】
将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面.将三棱锥补形为如图所示的三棱柱,则它们的外接球相同.由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得.又,故在中,,此即为外接球半径,从而外接球表面积为.故选:A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.12、B【解析】
求出圆心,代入渐近线方程,找到的关系,即可求解.【详解】解:,一条渐近线,故选:B【点睛】利用的关系求双曲线的离心率,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
判断函数为偶函数,周期为2,判断为偶函数,计算,,画出函数图像,根据图像到答案.【详解】知,函数为偶函数,,函数关于对称。,故函数为周期为2的周期函数,且。为偶函数,,,当时,,,函数先增后减。当时,,,函数先增后减。在同一坐标系下作出两函数在上的图像,发现在内图像共有1个公共点,则函数在上的零点个数为1.故答案为:.【点睛】本题考查了函数零点问题,确定函数的奇偶性,对称性,周期性,画出函数图像是解题的关键.14、【解析】
先作可行域,根据解三角形得外接圆半径,最后根据圆面积公式得结果.【详解】由题意作出区域,如图中阴影部分所示,易知,故,又,设的外接圆的半径为,则由正弦定理得,即,故所求外接圆的面积为.【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离、可行域面积、可行域外接圆等等,最后结合图形确定目标函数最值取法、值域范围.15、【解析】
根据题意,建立棱锥体积的函数,利用导数求函数的最大值即可.【详解】设底面边长为,则斜高为,即此四棱锥的高为,所以此四棱锥体积为,令,令,易知函数在时取得最大值.故此时底面棱长.故答案为:.【点睛】本题考查棱锥体积的求解,涉及利用导数研究体积最大值的问题,属综合中档题.16、【解析】
由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【详解】,,则,.故答案为:.【点睛】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)利用三角恒等变换思想化简函数的解析式为,然后解不等式,可求得函数的单调递增区间;(2)由求得,利用余弦定理结合基本不等式求出的取值范围,再结合三角形的面积公式可求得面积的取值范围.【详解】(1),解不等式,解得.因此,函数的单调递增区间为;(2)由题意,则,,,,解得.由余弦定理得,又,,当且仅当时取等号,所以,的面积.【点睛】本题考查正弦型函数单调区间的求解,同时也考查了三角形面积取值范围的计算,涉及余弦定理和基本不等式的应用,考查计算能力,属于中等题.18、(1)详见解析;(2)详见解析.【解析】
(1)连结根据中位线的性质证明即可.(2)证明,再证明平面即可.【详解】解:证明:连结是菱形对角线的交点,为的中点,是棱的中点,平面平面平面解:在菱形中,且为的中点,,,平面平面,平面平面.【点睛】本题主要考查了线面平行与垂直的判定,属于基础题.19、(1);(2)【解析】
(1)利用正弦定理将边化成角,可得,展开并整理可得,从而可求出角;(2)由余弦定理得,进而可得,由,可求出的值,设边上的高为,可得的面积为,从而可求出.【详解】(1)由题意,由正弦定理得.因为,所以,所以,展开得,整理得.因为,所以,故,即.(2)由余弦定理得,则,得,故,故的面积为.设边上的高为,有,故,所以边上的高为.【点睛】本题考查正弦、余弦定理在解三角形中的应用,考查三角形的面积公式的应用,考查学生的计算求解能力,属于中档题.20、(1);(2)存在,Q为线段中点【解析】
解法一:(1)作出平面与平面的交线,可证平面,计算,,得出,从而得出的大小;(2)证明平面,故而可得当Q为线段的中点时.解法二,以为原点,以为建立空间直角坐标系:(1)由,利用空间向量的数量积可求线面角;(2)设上存在一定点Q,设此点的横坐标为,可得,由向量垂直,数量积等于零即可求解.【详解】(1)解法一:连接交于,设与平面的公共点为,连接,则平面平面,四边形是正方形,,平面,平面,,又,平面,为直线AP与平面所成角,平面,平面,平面平面,,又为的中点,,,,直线AP与平面所成角为.(2)四边形正方形,,平面,平面,,又,平面,又平面,,当Q为线段中点时,对于任意的实数,都有.解法二:(1)建立如图所示的空间直角坐标系,则,,所以,,,又由,,则为平面的一个法向量,设直线AP与平面所成角为,则,故当时,直线AP与平面所成角为.(2)若在上存在一定点Q,设此点的横坐标为,则,,依题意,对于任意的实数要使,等价于,即,解得,即当Q为线段中点时,对于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车厢工厂转让协议书
- 黄金买卖合同协议书
- 车辆代租代管协议书
- 公费医学生分配协议书
- 项目管理分包协议书
- 驾驶培训安全协议书
- 非诉事务委托协议书
- 集体种植合作协议书
- Brand KPIs for second-hand apparel online shops hewi. (hardly ever worn it) in the United Kingdom-外文版培训课件(2025.2)
- 项目策划框架协议书
- 合伙经营吊车协议书
- 民办非企业会计制度
- 2023光伏发电站快速频率响应检测规程
- 广东省广州市2025届高三下学期考前冲刺训练(二)英语试卷(含答案)
- 我国战略性金属和关键矿产发展白皮书-2025-05-宏观大势
- 2025年入团考试开放机会与试题与答案
- 民办学校新学期课程设置计划
- ICU休克患者的镇痛镇静-秦秉玉
- 2025年高考数学复习难题速递之排列与组合(2025年4月)
- 森林抚育施工项目方案投标文件(技术方案)
- 北京开放大学2025年《企业统计》形考作业1答案
评论
0/150
提交评论