




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初三数学总复习课时安排建议
一、第一阶段复习内容与课时安排(共29课时)以知识的纵向关系为线索实现知识的第
一覆盖:
课时序号复习内容课时数过关测试内容时间
第1课时实数11、《实数》1课时
1、数第2课时二次根式1
数与第3课时代数式、整式运算12、《整式与分式》1课时
与式第4课时因式分解、分式1
代2、方程与不第5课时一次方程、分式方程13、《方程与方程组》1课时
数等式一次方程组
第6课时一元二次方程1
第7课时一元一次不等式(组)14、《不等式与不等式组》1课时
第8课时不等式的应用1
3、函数及其第9课时函数概念、一次函数15、《函数概念与••次函数》1课时
图象第10课时反比例函数16、《反比例函数》1课时
第11课时二次函数17、《二次函数》1课时
第12课时函数的应用1
第13课时平行线、三角形与证明18、《三角形与证明》1课时
1图第14课时特殊三角形1
空形第15课时多边形、平行四边形19、《四边形与证明》1课时
间的与证明
与认第16课时特殊平行四边形、梯1
图识形与证明
形第17课时圆⑴110、《圆》1课时
第18课时圆(2)1
第19课时作(画)图111、《作(画)图》1课时
第20课时视图112、《视图与投影》1课时
第21课时投影1
2、图形与变换第22课时图形的变换113、《图形的变换》1课时
第23课时相似形(1)114、《图形的相似形》1课时
第24课时相似形(2)1
第25课时解直角三角形115、《直角三角形的边角关系》1课
第26课时解直角三角形的应用1H-1
3、图形与坐标第27课时图形变换与坐标116、《图形与坐标》1课时
概率1、统计第28课时统计117、《统计》1课时
与
2、概率第29课时概率118、《概率》1课时
统计
二、第二阶段复习(约18课时)以知识的横向关系为线索实现知识的第二覆盖,建议专
题为:
1、选择填空2、归纳猜想3、探索开放4、图表信息
5、阅读理解6、操作设计7、实践应用8、几何与代数综合
三、第三阶段复习:模拟测试(约12课时)实现知识的第三覆盖。
第1课实数
复习教学目标:
1、理解现实世界中具有相反意义的量的含义,会借助数轴理解实数的相反数和绝对值的意
义,会求实数的相反数和绝对值,并会比较实数的大小。
2、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根和立方根。
3、了解无理数与实数的概念,知道实数与数轴上的点的一一对应的关系,会用一个有理数
估计一个无理数的大致范围,了解近似数与有效数字的概念,会用计算器进行近似计算。
4、结合具体问题渗透化归思想,分类讨论的数学思想方法。
复习教学过程设计:
I[唤醒]
一、填空:
1、-1.5的相反数是、倒数是、绝对值是、1—也错误!未指定书签。
的绝对值是。
2、倒数等于本身的数是,绝对值等于本身的数是。算术平方根等于本身
的数是,立方根等于本身的数是。
3,2'=,-2-2=,(-1尸=,(3.14-n)°=
4,在寺,n,-木,寺(-64),sin60”,tan45”中,无理数共有个。
5、用科学记数法表示:-3700000=,0.000312=
用科学记数法表示的数3.4X105中有个有效数字,它精确到位。
6、点A在数轴上表示实数2,在数轴上到A点的距离是3的点表示的数是。
7、A/260精确到0.1的近似值为—误差小于1的近似值为
3八
8、比较下列各位数的大小:—.0-1.tan300sin60()
二、判断:
1、不带根号的数都是有理数。()2、无理数都是无限小数。(
3、乎是分数,也是有理数。(
)4、3.没有平方根。()
5、若/=x,则x的值是0和1。()6>a2的算术平方根是a。(
三、选择:
1、和数轴上的点一一对应的数是()
A、整数B、有理数C、无理数D、实数
2、已知:xy<0,且1x1=3,lyl=l,则x+y的值等于()
A、2或一2B、4或一4C、4或2D、4或一4或2或一2
3、如果一个数的平方根与立方根相同,这个数为()
A、0B、IC、0或1D、0或+1或-1
II[尝试]
223)____
例1,已知下列各数:n,-2.6,—,0,0.4,-(-3),V^Tj,(-
)-2,cos30°,祝,-l°,0.21221222122221……(按此规律,从左至右,在每相邻的两个1之
间,每段在原有2的基础上再增加一个2)。把以上各数分别填入相应的集合。
无理数集合:(…)有理数集合:(…)整数结集合:
(…)
分数集合:(-)正数集合:(…)
(解略)提炼:实数的分类思想方法。
例2,计算下列各题:
13371151
1、2°-(-21+2久衣丽2、(g-24+m-9*(-72)3、5)-2-23x0.125-^4+1-11
2、解略(答案:1:5;2:-11;3:2
例3,已知实数a、b在数轴上的位置如图所示:--------1--------------1-------►
(1)你会比较实数a、b的大小吗?ab
(2)你会比较lai勺bl的大小吗?相信你能!
(3)在什么条件下>0?;<0?;=0?并说明此时坐标原点的大致位置。
解:(1)a<b,这是因为在数轴上表示的两个数,右边的总比左边的大。
分析:解决问题的关键是数轴的原点的位置,你想按怎样的顺序去变化呢?(可自左向右,
也可自右向左)
(2)当原点在点a的左边时,laKIbl当原点在点a,b的中点偏左时,laKIbl
当原点在点a,b的中点时,lal-lbl当原点在点a,b的中点偏右时,lal>lbl
当原点在点b的右边时,lal>lbl
(3)当a,b同号时(且aW0,b#0),7>0此时坐标原点在a的左侧或b的右侧
当a,b异号时(且a#0,b#0)与<0此时坐标原点在a,b两点之间
d
当a#0,b=0时,=0,此时坐标原点在b点
a
提炼:运用绝对值的意义,解决数形结合问题中的动点问题,渗透化归和分类讨论的
数学思想方法,训练学生逆向思维。
III[小结]
整数
修理数
1、实数的分类
分数
无理数
什么叫无理数
相反数:
2、实数a的绝对值:
倒数:(当时)
3、实数的运算和科学记数法
4、运用绝对值的意义,解决数形结合问题中的动点问题,渗透化归和分类讨论的数学思想
方法,注意逆向思维的运用。
IV[实践]
1、教师自行设计作业
复习指导用书P3-41,2,3①-③⑥,6P171①-③
第2课二次根式
复习教学目标:
1、知道平方根,算术平方根,立方根的含义,能说出二次根式的两条运算法则。
2、会用根号表示并会求数的平方根,算术平方根,立方根,会进行简单的二次根式的四则
运算,会对简单的二次根式进行化简,能估算一个无理数的大致范围并能比较大小。
3、在解题过程中体会数形结合思想,由特殊到一般的数学思想,并能用它们解决问题。
复习教学过程设计
I【唤醒】
一、填空:
‘定义:平方根,算术平方根,立方根
yy[a,-\/b="\/ab(a》0,b>6),化简
知识结构(阅读):运算法则JI一
、兴(a20,b>0)J[四则运算
1.4的平方根是,洞的算术平方根是,立方根是
2.化简:y[50=,=,(乖-=_______,Xm=
3.比较大小:y/153.85,-2干____-3小,次}1
4.估算:4=—(误差小于0.1),赖=(误差小于1)
5.根式4分母有理化的结果是
y/2-l--------------
二、判断:
LJ的平方根是J()2.任何数都有算术平方根()
yo
3.任何数都有立方根()4./义仃=亚=2m()
错误!未指定书签。_
5.=5=2xI=f()6.5y[3+2*=7琳()
三、选择题:
1.下列说法中正确的是()错误!未指定书签。错误!未指定书签。错误!未指定
书签。
A、1没有算术平方根B、1的平方根是1
C、0的平方根是0D、-1的平方根是T
2.下列各式中正确的是()_
A、^25=±5B、、(-3"=-3C、j^/36=+6D、「100=-10
3.下列语句正确的个数为()
(1)±4是64的立方根,(2)我~=x,^64的立方根是4,,(4)印(±8)2
(3)=±4
A、1个B、2个C、3个D、4个
4.化简勺(xT”(X<1)正确的是()
A、x-1B、(x-1)2C、1-xD>无法确定
11【尝试】:
例1、计算:⑴耒诉r
⑵返泻Mx(3-4)
(3)(3^/2-2.)(5m+4.)-(.-1产
解(略)(答案:-样乖,寸,1673-40)
提炼:(1)对于带根号的无理数的运算,可运用公式6•Vb/(a'0,b20),
y[a=耒(a>0,b>0)且这两个公式可以顺向和逆向两个方面运用。
y[b
(2)适当运用乘法公式可使运算简化。
(3)计算结果必须简化。
例2、是否存在这样的数,它的平方为35?如果不存在,请说明理由,如果存在,请写出
来并用作图的方法在数轴上找出表示这个数的实数点。
分析:首先求出符合条件的数口麻,再在数轴上作一个直角三角形,找到表示R区的线
段即可
解(略)
提炼:(1)在数轴上作这样的点时;常常通过作直角三角形来解决。
(2)本题有两解,防止漏解现象,解题时,应仔细审题,全面考虑,注意数形结合
的思想。
例3、(1)判断下列各式是否成立,你认为成立的请在括号内打“J”,不成立的打“X”
(2)判断完以上各题后,你发现了什么规律?请用含有n的式子将规律表示出来,并
注明n的取值范围。
(3)请用数学知识说明你所写式子的正确性。
分析:先按运算公式计算化简后,再判断找规律。
解:(1)均正确。
提炼:本题是一道探索题,由特殊进行观察,归纳,建立猜想,用符号表示并给出证明,体
现了数学中常用的由特殊到一般的思想方法。
III【小结】:1、知识结构见上表
2、基本数学方法:数形结合思想,特殊到一般思想,分类思想等
3、解题注意点:(1)解题时应弄清基本概念,法则
(2)注意解题的严密性,充分考虑各种情况,防止漏解现
象。
IV【实践】:1、教师自行设计
2、复习指导用书P3练习一3、(4)(5)p17复习题3、4。
第3课代数式整式运算
复习教学目标:
1.了解字母表示数的意义,了解单项式、多项式、整式以及单项式的系数与次数、多
项式的项与次数、同类项的概念,并能说出单项式的系数和次数、多项式的项和次
数。知道正整数幕的运算性质,能说出去括号、添括号法则,了解两个乘法公式的
几何背景。
2.会用代数式表示简单问题中的数量关系,会求代数式的值,会把一个多项式按某个
字母升(降)毒排列,会判断同类项,并能熟练地合并同类项,会准确地进行去括
号与添括号,会推导乘法公式,能运用整式的运算性质、公式以及混合运算顺序进
行简单的整式的加、减、乘、除运算。
3.通过运用幕的运算性质、整式的运算法则和公式进一步发展观察、归纳、类比、概
括等能力,
会运用类比思想,一般到特殊、再由特殊到一般的数学思想和数形结合思想解决问
题。
复习教学过程设计:
I.【唤醒】
知识结构(阅读)--------------------------------------------
现实世界、其他学科、数学中的问题情境
整式的加减
[■同底数第的乘法、事的乘方、积的乘方
蔚
I同底数事的除法、零指数和负整数指数累
"单项式乘单项式
整式的乘法“单项式乘多项式
.多项式乘多项式、平方差公式、完全平方公式
.单项式除以单项式
整式的除法,
.多项式除以单项式
一、填空:
1.和统称为整式。
a"-a"=(,”、,?都是正整数)(〃八"都是正整数,且m>n)
2.
(一)"=(n"都是正整数)(时)”=(相是正整数)
a"=___(a*0),a:,-____(akO,p是正整数)m(a+b+c)=
(m+n)(a+b)=
(am+bm+cm)+m=(a+b)(a-b)=
(a+b)2=_________(a-b)2=_________
3.整式的混合运算顺序:先、后__、再、有括号先_
二、判断:
L3a力和」加是同类项。()2.单项式-士曰的系数是-上次数是3。()
433
3.多项式5x‘-2xy+3的次数是五次三项式。()4.a-(3fe+c)-a-3b+c
)
5.多项式+x'-5y,按x的降辕排列为x*+2/y-4xy’
()
三、选择:
1.某商场实行7.5折优惠销售,现售价为y元的商品的原价为()
A.75%y元B.(l-75%)y元C.上元D.元
75%1-75%
2.若-abm-'^-3//是同类项,则机和"的值为
2
()
A.4和3B.2和3C.4和2D.无法确定
3下列各式计算过程正确的是
()
A.广+彳2=”2=/B.苫3/=产=1C.D.
一•(一力3=一产=牙
4.下列各式中,不能用平方差公式计算的是
()
A.(3a+2b)(2b-3a)B.(4,-3bc)(4,+3bc)C.(2a+3b)(2fe-3«)D.
(3w+5)(5-3/«)
5.d+3+16/是完全平方式,则Z的值为
()
A.4B.8C.4或*4D.8或-8
II.【尝试】
例1.先化简,再求值:x-2(x-y')+(-3x+y)其中x=-2,y=-1。(答案:11)
例2.计算:(-2a%)'.(-3/)+($方)
分析:按整式混合运算的顺序:先乘方,同级运算从左往右依次进行。(答案:36b)
提炼:在熟练掌握整式的运算法则和暴的运算性质基础上.必须严格按照混合运算顺序逐步运
算。
例3.计算:(1)(-2x-3y)(2x-3y)+(x-4y)~-2(3x-5y)-;(2)(4a-3匕+2c)(4a+36-2c)
分析:第(1)题根据混合运算法则先合理使用乘法公式,后进行整式的加减运算。
第(2)题先将原式转化为[4o-(38-2c)][4a+(36-2c)]的形式,后运用平方差公式
将其化为16/_(36-2c)2的形式,最后利用完全平方公式计算即可。(答案见复习指
导用书第11页)
提炼:根据乘法公式的特点将原题中的代数式变形为符合公式特点的形式是解此类题的关
键。
例4.见《复习指导用书》第6页例2
分析:解决本题时学生往往着眼于分析表格中的数据的变化,应指导学生结合具体的图形观
察图形的形成规律,着重在摆成的平行四边形的两组对边与菱形和等腰梯形的边长之
间的关系。
提炼:本例是一道探索题,首先给出了几个特殊的图形,然后根据这些特殊的图形的周长,
进行探索、归纳、猜想,得到一般图形的周长,体现了数学中常见的由一般到特殊、
再由一般到特殊的思想方法以及数形结合思想。
III.【小结】
1.本单元的知识结构(见填空)。
2.本节课运用的数学思想方法:类比思想,一幄懵殊、再由特殊到一般的思想方法和数形结
合思想等。
IV.【实践】
1.教师自行设计作业。
2.复习指导用书第9页第3、7、8题和第12页第3题。
第4课时因式分解分式
复习教学目标
1、知道因式分解、分式的概念;能说出分式的基本性质。
2、会灵活应用四种方法进行因式分解;会利用分式基本性质进行约分和通分;会进行简单
的分式加、减、乘、除运算。
3、会逆用乘法公式、乘法法则验证因式分解;会用类比的方法得出分式的性质和运算法则;
会用作差法比较两个代数式值的大小。
复习教学过程设计
一、【唤醒】
1、填空题
(1)r因式分解的概念r
因式分解J-----------
i因式分解的方法<------------
分组分解法
、十字相乘法
(因式分解方法的选择:一提、二用、三叉、四分组)
(2)因式分解中的公式有,—
(3)分式的乘(除)法法则是,.
分式的加(减)法法则是
2、判断题
1)等式3--6/+4=3/(》一2)+4从左到右的变形是分解因式
(X)
(2)只要分式的分子为零,则分式的值就为零
(X)
式用
(3)分有意义则a+
+1
(X)
3、选择题
1)若a+b=l,ah=10,则a2b+ah2的值应是
(C)
A.17B.10C.70D.17
2)下列各式分解不iH确的是
(C)
2
A、-x2-^-xy-xz=-x(x—y+z)B、-6a2b+9ab2=a(a-3b)
C4/-16=(2〃+4)(2〃-4)D
x2-y2+2yz-z2=x2-(y2-2yz+z2)=(x-y+z)(x+y-z)
(3)分解因式X2-4X-12的结果是
(C)
A、(x-3)(x+4)B、(x+3)(x—4)C、(x+2)(x-6)D、
(x-2)(x+6)
(4)下列等式成立的是
(D)
Aa+b.
A———-=a-bB'=C2),=^D
mm+a2x+yx+y
-=
机
Xl
化.
-J
y&
孙y
cA1B-Dy
X
二、【尝试】
例1有这样的一道题:“计算:V-2X+]+手工7的值,其中42006。”甲
厂-1X~+X
同学把
“x=2006”错抄成“x=2060”,但他的计算结果也是正确的。你说这是怎么
回事?
解原式=0因为化简结果不含x,所以无论他抄什么值,结果都是正确的。
提炼:如果把x的值抄错,而不影响计算结果,这一类题的化简结果一定是一个常数,与x
的取值无关;
如果把x的值抄成它的相反数,而不影响计算结果,这一类题的化简结果一定是一个
常数或者是
关于x偶次第的代数式,与x的符号无关。
例2化简
x+2x+2x~1x-2%+2x+2
X1
解(1)原式二一——(2)原式二二一
x+2x—2
提炼:(1)解题时要注意分式的运算顺序,先乘除,再加减,有括号优先,其次能分解的
多项式要分解因式,便于约分,结果一定要是最简分式。
(2)对于(a±»+c分配律仍适用,但c+(a±。)不能用分配律。
3x-4AB
例3已知:--------=---1---,求整式A、B,
(x——2)x—1x—2
分析:由于要求A、B,等式的左边是已知,右边是未知,可以从未知化到已知。故把等式
作恒等变形,得到等式左右两边分母相同,所以分子也相同,转化为关于A、B的一
个二元一次方程组,再求解。
解A=1B=2
提炼:本例是分式运算的逆向运用,两个代数式恒等,首先是化结构相同,其次是利用相同
项的系数也相同求未知量。
例4甲、乙两人进行百米赛跑,甲前半程的速度为m米/秒,后半程的速度为n米/秒;乙
前半时的速度为m米/秒,后半时的速度为n米/秒。问:谁先到达终点?
分析:本题首先要用m、n的代数式表示甲、乙两人到达终点的时间3t2,比较3t2的大
小,可以转化为t「t2与0比较
解见复习指导用书第16页
提炼:(1)比较两个代数式A、B的值的大小,通常可用作差的方法,当A-B>0,则A>
B;当A-B=O,则人=8:当A-B<0,则A<B。
(2)由于本例中没有指明m、n的大小,所以要分m=n与mWn两种情况讨论。
三、【小结】
1、带领学生回顾尝试中的填空题。
2、这节课复习因式分解的应用,化简分式。在化简分式时,注意的运算顺序和符号,防止
出错。其次比较两个代数式值的大小可以用作差法。
四、【实践】
(1)教师自行设计作业(2)复习指导:14页第3题单数、17页3、4
第5课时一次方程分式方程一次方程组
复习教学目标
1、了解一次方程、分式方程、二元一次方程组的概念。知道方程组的解的含义。理解分式
方程产生增根的原因。理解二元一次方程与一次函数的关系。说出解整式方程和分式方程
的异同,
2、会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程。
3、运用化归思想,引导学生分析出解二元一次方程组的本质是消元。运用方程或方程组解
决实际问题
复习教学过程设计
一、【唤醒】
1、填空:
,一元一次方程一>解题步骤-----------------------
'整式方程V二元一次方程组一,解法V
一元二次方程〔图像法
方程“小个十产
分式"程一解题方法:______________________________________________
方程(组)的应用
2、判断:
(1)—+1=1是一元一次方程()(2),/3x=2x=—
2x32
()
x=1
3)•••J是方程2x+y=3的解,方程2x+y=3的解是卜=1
[y=lb,=I
()
(4)方程组3x+y=3的解是一次函数y=3—3x与y=2x-1的图象的交点坐标
2x—y=\
()
3、选择:
(1)关于的方程(加一l)x+2〃z-l=0是一元方程,则m为
)
A、m—B、m=-1C、加W1D、m丰-1
2x+y
2)二元次方程组=2的解是
7+)=5
)
X=1x=-1x=-3卜=3
A、B、C、Dfy=2
y=6y=4j=2
3)已知是x=-2方程2x+m—4=0的一个根>则m的值是
()
A、8B、—8C、0D2
ax+by=4x=2
(4)已知方程组的解是则a+b的值为
bx+ay-5J=1
()
A、3B、0C、-1D1
【尝试】:
例1:解方程:
(1)口2x+3.x+14
-----=1=1
34x-1x2-1
解:略答案:(1)x=-12.5(2)x=l是增根,原方程无解
提炼:解分式方程与整式方程的方法相似,容易出现错误的地方一是去分母时漏乘整式项及
分子是多项式忘记添括号,二是忘记检验求得的整式方程的解是不是分式方程的根:
例2:解方程组
2x+y=4
(1)<(2)3x+2y=5y+12x=-3
3x-2y=13
解略答案(1)卜=3
\y=-2
提炼:解二元一次方程组应先观察方程中相同未知数的系数的特征,如果一个未知数的系数
绝对值为1,一般选用代入法,若相同未知数系数绝对值相等,•般用加减法。
例3:在一次慈善捐款活动中,某同学对甲、乙两班捐款情况进行统计,得到如下三条信
息:信息一:甲班共捐款300元,乙班共捐款232元;信息二:乙班平均每人捐款钱数
4
是甲班平均每人捐款钱数的二倍;信息三:甲班比乙班多2人.请你根据以上三条信息,
求出甲班平均每人捐款多少元?
解略答案5元
提炼:列方程解应用题的步骤是一“审”二“设”三“列”四“解"五“答”。在审题过程
中,要找出等
量关系,设元的方法有两种(直接设元法和间接设元法),列是根据等量关系列出相
应的方程(组),
在解方程时,还要考虑方程的解是否要检验、是否符合实际意义,最后写上答案
例4:(1)、阅读下列表格,求出表中关于x的方程的解。
方程方程的解(2)、通过阅读上述表格,你能解关于x的
111方程
犬+—=C+—X]=c,x,=-
XCc22
x+——=c+——吗?
111x-1C-1
X—=c—X)=C,X=——
XC2c分析:仔细阅读表格,比较以后不难发现方
222程的相似之处。方程左右两边形式完全相
x+—=c+—X=c,x=-
XC]2c同,只是把其中的未知数换成了某个常数,
333那么这样的方程可直接得解,因此我们只要
X+—=c+—X1=C,X=-
XC2c把x+二_=c+二_换成这种形式即可。
44x-1c-1
x+—=c+—X[=__=_____
Xc角单:X-1H---=c—14..-
mm八、x-1c-l
x4—=c+—z(mW。)/=__=_____
xc••x—1=c—1或%—1=----
•C+1
••X)=cx=---
c-192
经检验匕=C,£=山是原方程的解。
C-1
提炼:观察、比较、归纳、猜测是解数学题的重要能力,仔细观察方程结构,将要解的方程
化为材料中的方程的形式,体会类比思想。
三、【小结】
1、知识结构:见填空。2、基本数学思想:化归思想、类比思想、数形结合思想。
四、【实践】
1、教师自行设计作业。2、复习指导用书:第21页3、24页15、31页9、10、12题。
第6课时一元二次方程
复习教学目标
1、知道一元二次方程及其相关概念;了解求方程近似解的方法;能说出列方程解应用题的
步骤。
2、会灵活应用方程解法解简单的一元二次方程。
3、会利用一元二次方程知识解决有关实际问题,能根据具体问题的实际意义检验结果的合
理性及分类思想。通过复习方程解法,进一步体会转化思想。
复习教学过程设计
一、【唤醒】
1,填空题r近似解’直接开方法
一元二次方程:精确解<
l应用(注意验证解的合理性)
2、判断题
(1)关于x的方程仅2-1*+履一5=0是一元二次方程,贝I」人。±1且k/0
(X)
(2)把一元二次方程(2x—1K=3%-7化成一般形式是(2x—1)2-3》-7=0
(x)
(3)方程X2+6X-5=0的左边配成完全平方后所得方程为(x+3『=4
(X)
3、选择题
(1)方程X2-5X=7根的情况是
(B)
A、有两个相等实根B、有两个不等实根C、没有实根D、无法确定
(2)若一元二次方程x—工=0两个实数根xi、xz,则1+_1的值是
2$x2
(A)
A、-2B、-1C、4D、2
22
(3)关于X的一元二次方程一一乙一7二0的一个根为玉=1,另一根为马,则有
(A)
A、k=—6,x2=—7B、k=6,x?=7C、k=-6,x2=7D
k—6,x2——7
x?—3x+2八
4)已知1贝|Jx的值为
2-1
(C)
A、1B、1或2C、2D、5
二、【尝试】
例1用适当方法解下列方程:
1
(1)-(2x-l)7--8=0(2)9(X-3)2-4(X-2)2=0
(3)-2y~+3-^y(4)x?+2缶4=0
分析:结合方程特点,四道题的解法依次是直接开方法、分解因式法、公式法、配方法。
解略答案见复习指导用书第26页
提炼:形如a/+c=0的方程,选择用直接开方法;形如一+么+。=0的方程,左边可
以因式分解,选择用因式分解法:形如/+/+。=0的方程,如果一次项系数是
偶数,可以选择用配方法;否则用公式法。
例2去年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡镇去年人均上缴农
业税25元,预计明年人均上缴农业税为16元,假设这两年降低的百分率相同.
(1)求降低的百分率;(2)若小红家有4人,今年小红家减少多少农业税?
(3)小红所在的乡约有16000农民,问该乡农民今年减少多少农业税.
分析:例题第(1)小题跨度3年,去年、今年、明年,用列表法分析,设降低的百分率是X,
去年是25元,用x表示今年是25(1-x),明年是25(1-然后根据等量关系列
出方程,解出x的值;第(2)、(3)题已知x的值,分别求代数式
25xx425xx16000的值;
解略答案(1)20%(2)20元(3)80000元
提炼:运用数学知识解决社会热点问题和实际生活中的问题,关键是理解题意,将实际问
题转化为数学问题。其次本例中的百分率是一个小于1的正数。
例3有一根长为68cm的铝丝,把它剪成32cm和36cm的两段,用32cm的一段弯成一个矩
形,36cm的一段弯成一个有一条边是10cm等腰三角形。请问:能否使弯成的矩形与等
腰三角形的面积相等?若不能,请说明原因;若能,请求出矩形的边长。
解略解法参照复习指导用书第35页
提炼:(1)例题是一道几何背景面积相等的应用题,包含的知识点有矩形、三角形的周长、
面积,等腰三角形的三线合一、勾股定理以及方程的解法。
(2)三角形一边长是5cm,这一边是腰还是底边不清楚,所以必须分类讨论。
例4阅读卜列材料,并回答问题:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CACEM 15.2-03-2020城市公共交通运营服务第3部分:场站管理要求
- 互联网协议版本解析试题及答案
- 嵌入式编程技术的研究与应用试题及答案
- 应试技巧公路工程试题及答案辅助
- 公路工程考试前沿知识与试题及答案
- 在测试团队中培养更好的沟通与协作氛围试题及答案
- 客流监测预警管理制度
- 公司快递消毒管理制度
- 库存用品使用管理制度
- 化工安全教材管理制度
- 中国兽药典三部 2020年版
- 上海市社区工作者管理办法
- 广西壮族自治区北海市各县区乡镇行政村村庄村名明细及行政区划划分代码居民村民委员会
- Q∕SY 05038.4-2018 油气管道仪表检测及自动化控制技术规范 第4部分:监控与数据采集系统
- 三调土地利用现状分类和三大地类对应甄选
- 初中物理公式总结
- 中国医院质量安全管理 第4-6部分:医疗管理 医疗安全(不良)事件管理 T∕CHAS 10-4-6-2018
- 老年人的居家护理课件
- DB51∕T 2858-2021 农业科技成果效益计算方法及规程
- 高三理科数学第一轮复习计划
- 《未成年人保护法》学习教案
评论
0/150
提交评论