版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1T/CNEAXXXX—XXXX平行样放射性测量结果著性差异的检验本文件提供了平行样放射性测量结果显著性差异检验指标的计算方法、显著性差异的检验方法。本文件适用于放射性测量人员进行平行样放射性测量结果显著性差异的检验。2规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。GB/T3358.1统计学词汇及符号第1部分:一般统计术语与用于概率的术语GB/T4086.1统计分布数值表正态分布GB/T4883数据的统计处理和解释正态样本离群值的判断和处理GB8999电离辐射监测质量保证通用要求HJ61辐射环境监测技术规范3术语和定义GB/T3358.1界定的以及下列术语和定义适用于本文件。3.1样本均值samplemean算术平均值arithmeticmean随机样本中随机变量的和除以和中的项数。3.2绝对偏差absolutedeviation某一次测量值与多次测量平均值的差值,简称偏差。3.3相对偏差relativedeviation某一次测量的绝对偏差占平均值的百分比。3.4样本方差samplevarianceS2随机样本中随机变量与样本均值差的平方和用和中项数减1除。2T/CNEAXXXX—XXXX3.5样本标准差samplestandarddeviationS样本方差的非负平方根。3.6样本变异系数samplecoefficientofvariationCV样本标准差除以非零样本均值的绝对值。注1:变异系数通常表示成百分数。注2:不赞成使用以前的术语“相对标准差”。3.7重复性限repeatabilitylimitr一个数值,在重复性条件下,两个测试结果的绝对差小于或等于此数的概率为95%。3.8统计检验statisticaltest显著性检验significancetest判断是否拒绝原假设,支持备择假设的方法。3.9显著水平significancelevelα<统计检验>原假设为真,而被拒绝的最大概率。3.10置信水平confidencelevel被估参数的置信区间包含参数真值的概率。3.11p分位数p-quantile;p-fractileXp,xp对于0<p<1,使分布函数F(x)大于或等于p的所有x的下确界。3.12离群值outlierXp,xp样本中的一个或几个观测值,它们离开其他观测值较远,暗示它们可能来自不同的总体。3T/CNEAXXXX—XXXX4总体要求4.1平行样放射性测量结果检验指标的计算基础参数对一组平行样X1,X2,ⅆ,Xn,其放射性测量结果分别为x1,x2,…,xn,算数平均值用公式(1)表示,其中某样品Xi测量结果偏差用公式(2)表示,该测量结果的相对偏差用公式(3)表示。(1)Δi=xi−x(2)(3)x-为各测量结果的算术平均值,Δi为第i个测量结果xi的偏差,vi为第i个测量结果xi的相对偏差。对于平行双样,两个样品的相对偏差的绝对值相等,公式(3)可变为公式(4)。(4)样本标准差用公式(5)表示。(5)样本变异系数用公式(6)表示。(6)4.2检验指标的选择如果标准方法规定了平行样放射性测量结果显著性差异的相对偏差检验指标,可直接使用。如果标准方法或其他标准给出的检验指标不合理,可采用本文件规定的方法。对于样本数量不小于3个的平行样,放射性测量结果显著性差异的判定方法可先参考GB/T4883进行检验,当剔除离群值后的数据量不足3个时,可利用本文件规定的方法进行检验。对于样本量多余3个的平行样,也可对其中测量结果最大的和最小的两个平行样先进行判断,如果经判定通过一致性检验,则可认为所有平行样都通过检验;如果未通过一致性检验,则先剔除远离平均值的平行样,再逐一检验其他平行样,以此类推,直到全部通过检验为止。大多数放射性测量的标准分析方法并未给出平行样测量结果显著性差异的相对偏差检验指标,而是给出了分析方法的精密度,且大多数标准分析方法以重复性和再现性这两种精密度的极端方式给出,因此无法直接使用相对偏差指标来检验平行样的显著性差异。本文件利用放射性测量统计涨落的特性,使用统计检验的方式进行平行样放射性测量结果的显著性检验。平行样一般是实验室内部的质量控制样品,其放射性测量是同一实验室,由同一操作人员使用相同的设备,按相同的方法,在短时间内对在同一地点同时(或邻近的短时间内)采集的样品进行独立分析测量,因此平行样放射性测量结果显著性检验主要选择测量的重复性指标。平行样放射性测量结果显著性差异检验的是测量结果的一致性,需判断是否拒绝平行样测量结果相等的假设,因此应选择双侧检验。如果标准方法给出测量精密度时同时给出了精密度的自由度ν,双侧检验时用t分布分位数xp=t1−a2(v);如果未给出精密度的自由度,双侧检验时用标准正态分布的分位数xp=u1−a2。t分布分位数值t1−a2(v)与标准正态分布的分位数值u1−a2可通过附录A查询。4T/CNEAXXXX—XXXX5相对偏差检验法5.1检验方法如果标准分析方法给出了某显著性水平α下平行样测量的最大相对偏差指标v0,则直接使用该指标来判断该水平下平行样测量结果间的显著性差异。如果标准分析方法未直接给出平行样测量的最大相对偏差指标,而给出了实验室内样本变异系数CV(或可计算得到CV值的相关参数),可根据下述统计量分布选择显著性水平为α时的分位数Xp。检验两值是否有显著性差异,用双侧检验。如果标准分析方法给出了参与精密度计算的样本量,可通过附录A.1t分布分位数值表确定分位数xp=t1−a2(v)。否则,如果标准分析方法未给出参与精密度计算的样本量,默认经过大量的数据统计计算的结果,可通过附录A.2标准正态分布分位数值表确定分位数xp=u1−a2。则最大相对偏差指标:v0=xp∙CV(7)根据公式(3)计算平行样的相对偏差vi。如果满足公式(8),说明该平行样的测量结果与其他平行样间不存在显著性差异;如果满足公式(9),则存在显著性差异。vi≤v0vi>v0示例1:两平行水样总β测量结果分别为x1=(2.00±0.16)Bq/L、x2=(1.79±0.14)Bq/L;标准分析方法给出的测量精密度为实验室内变异系数CV<10%,并给出该结果是n=85个样品的统计结果。检验在显著性水平α=0.05下两平行样的测量结果是否存在显著性差异。两平行样的平均值x-===1.895Bq/L两平行样的相对偏差=5.54%通过附录A.1t分布分位数值表查询分位数xp=t1−a2(v)=t1−0.052(84)=t0.975(84)=1.9901。相对偏差检验指标v0=xp∙CV=1.9901×10%≈19.9%vi=5.54%≤v0=19.9%满足公式(8),说明两平行样测量结果间不存在显著性差异。示例2:如果例1中未给出样本量,则通过附录A.2标准正态分布分位数值表查询分位数xp=u1−0.052=u0.975=1.959964。相对偏差检验指标v0=xp∙CV=1.959964×10%≈19.6%vi=5.54%≤v0=19.9%也满足公式(8),说明两平行样测量结果间不存在显著性差异。示例3:如果例1中未给出样本量,也未给出精密度值。可根据HJ61-2021查得在活度浓度x>0.15Bq/L时,平行样显著性差异检验的相对偏差指标为v0=20%。vi=5.54%≤v0=20%也满足公式(8),说明两平行样测量结果间不存在显著性差异。5.2特点5T/CNEAXXXX—XXXX平行样测量结果的相对偏差与给定指标比较检验法应用时,要尽可能选择与测量结果放射性水平相近的值对应的相对偏差指标。在相对偏差指标相同的情况下,测量结果越较小,各测量值更容易被检验出显著性差异。有的标准按放射性活度浓度或比活度的大小,分别给出几个不同的相对偏差检验指标,放射性水平分界点处存在检验指标的突变问题。如水样总β活度浓度在小于0.15Bq/L时、大于0.15Bq/L时,相对偏差检验法的检验指标分别为30%、20%,会导致在0.15Bq/L附近的测量结果间显著性差异的判定结果存在不确定性,这种突变的情况在利用测量结果相对偏差检验法中很具有代表性。6绝对偏差检验法6.1检验方法如果标准分析方法给出了测量方法的精密度,选择其标准差作为平行样测量结果显著性检验的指标。如果标准分析方法提供的精密度并非重复性标准差u0,而是在某一放射性水平x-下的变异系数Cv,则可利用公式(6)求得重复性标准差u0=x-·Cv。参照本文5.1所述方法据其样本量确定统计分布,并查询显著性水平为α时的分位数XP。根据公式(2)计算平行样的绝对偏差∆i。令绝对偏差检验指标∆0=XP∙u0。如果满足公式(10则判定该样品的测量结果与其他样品的测值间无显著性差异;如果满足公式(11则判定存在显著性差异。∆i≤∆0(10)∆i>∆0(11)示例4:与例1的条件一致。两平行样的平均值=1.895Bq/L标准分析方法的标准差u0=x-·Cv=1.895Bq/L×10%≈0.1895Bq/L通过附录A.1t分布分位数值表查询分位数XP=t1−a2(v)=t1−0.052(84)=t0.975(84)=1.9901。绝对偏差检验指标∆0=XP∙u0=1.9901×(0.1895Bq/L)≈0.377Bq/L两平行样的绝对偏差=0.105Bq/L∆i=0.105Bq/L≤∆0≈0.377Bq/L满足公式(10),说明两平行样测量结果间不存在显著性差异。示例5:两平行水样总β测量结果分别为x1=(2.00±0.16)Bq/L、x2=(1.20±0.13)Bq/L;标准分析方法给出的测量精密度为实验室内标准差为u0=0.19Bq/L。检验在显著性水平α=0.05下两平行样的测量结果是否存在显著性差异。两平行样的绝对偏差=0.40Bq/L由于标准分析方法未给出样本量,通过附录A.2标准正态分布分位数值表查询分位数XP=u1−0.05/2=u0.975=1.959964。绝对偏差检验指标∆0=XP∙u0=1.959964×(0.19Bq/L)≈0.372Bq/L6T/CNEAXXXX—XXXX∆i=0.40Bq/L>∆0≈0.372Bq/L满足公式(11),说明两平行样测量结果间存在显著性差异。6.2特点该检验法应尽可能选择标准方法的重复性标准差,而尽可能不使用再现性标准差;如果标准方法根据不同的放射性水平给出不同的重复性精密度指标,应选择与平行样测量结果接近的放射性水平对应的精密度指标。7测量结果差值的不确定度检验法7.1检验方法对平行样X1、X2,两个样品测量结果差值的绝对值(该文统称“测量结果差值”)可用公式(12)表示。Δ=x1−x2(12)式中:x1、x2分别表示两个平行样X1、X2的测量结果,△为两个测量结果的差值。放射性样品测量存在不确定度。根据不确定度的传递规律,对独立测量的两个平行样,其测量结果差值△的标准不确定度可用公式(13)式表示。(13)式中:u1、u2分别为2个平行样测量结果x1、x2的标准不确定度,u∆为差值△的标准不确定度。如果两个平行样测量结果都是由单次测量计数计算所得,可视为标准正态分布,参照本文5.1所述方法查询显著性水平为α时的分位数Xp。令∆0=Xp∙u∆,如果满足式公式(14),可判断两个平行样的放射性测量结果间不存在显著性差异;反之,如果满足式公式(15),则判断为存在显著性差异。∆≤∆0(14)∆>∆0(15)示例6:与例1的条件一致。测量结果差值△的标准不确定度≈0.213Bq/L通过附录A.2标准正态分布分位数值表查询分位数Xp=u1−0.052=u0.975=1.959964。检验指标∆0=Xp∙u∆=1.9901×(0.213Bq/L)≈0.424Bq/L两平行样的测量结果差值∆=x1−x2=2.00Bq/L−1.79Bq/L=0.21Bq/L∆=0.21Bq/L≤∆0≈0.424Bq/L满足公式(14),说明两平行样测量结果间不存在显著性差异。示例7:与例5的条件一致。测量结果差值△的标准不确定度≈0.206Bq/L通过附录A.2标准正态分布分位数值表查询分位数Xp=u1−0.052=u0.975=1.959964。检验指标∆0=Xp∙u∆=1.9901×(0.206Bq/L)≈0.410Bq/L7T/CNEAXXXX—XXXX两平行样的测量结果差值∆=x1−x2=2.00Bq/L−1.20Bq/L=0.80Bq/L∆=0.80Bq/L>∆0≈0.410Bq/L满足公式(15),说明两平行样测量结果间存在显著性差异。7.2特点平行双样测量结果差值的不确定度值随测量结果变化而渐变,不存在检验指标随放射性水平的变化而突变的问题,在样品的放射性水平较低时,因样品测量结果的相对不确定度较大,检验指标相对较宽松;在放射性水平较高时,测量结果的相对不确定度较小,检验指标相对较严格。这种利用平行双样测量结果差值的不确定度作为指标的检验法更具通用性、合理性。本检验方法亦可用于平行多样的放射性测量结果的显著性差异的检验,即每两个样品间用平行双样法进行检验。8T/CNEAXXXX—XXXX(规范性附录)统计数值表t分布分位数值t1−a/2(v)见A.1。标准正态分布分位数值u1−a2见A.2。A.1t分布分位数值表t分布分位数表(下侧/左尾)vt1−a2(v),其中1−a/2为在自由度v下的累积概率t0.95t0.975t0.99t0.99516.313812.706231.820563.656722.92004.30276.96469.924832.35343.18244.54075.840942.13182.77643.74694.604152.01502.57063.36494.032161.94322.44693.14273.707471.89462.36462.99803.499581.85952.30602.89653.355491.83312.26222.82143.24981.81252.22812.76383.16931.79592.20102.71813.10581.78232.17882.68103.05451.77092.16042.65033.01231.76132.14482.62452.97681.75312.13142.60253.94679T/CNEAXXXX—XXXXvt1−a2(v),其中1−a/2为在自由度v下的累积概率t0.95t0.975t0.99t0.9951.74592.11992.58352.92081.73962.10982.56692.89821.73412.10092.55242.87841.72912.09302.53952.86091.72472.08602.52802.84531.72072.07962.51762.83141.71712.07392.50832.81881.71392.06872.49992.80731.710
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论