人教备战中考数学一元二次方程-经典压轴题含答案_第1页
人教备战中考数学一元二次方程-经典压轴题含答案_第2页
人教备战中考数学一元二次方程-经典压轴题含答案_第3页
人教备战中考数学一元二次方程-经典压轴题含答案_第4页
人教备战中考数学一元二次方程-经典压轴题含答案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、一元二次方程真题与模拟题分类汇编(难题易错题)1.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P(﹣﹣1,2);②P(﹣,)【解析】试题分析:(1)将B、C的坐标代入已知的抛物线的解析式,由对称轴为即可得到抛物线的解析式;(2)①首先求得抛物线与x轴的交点坐标,然后根据已知条件得到PD=OA,从而得到方程求得x的值即可求得点P的坐标;②,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为,∴,解得:,∴二次函数的解析式为=,∴顶点坐标为(﹣1,4);(2)令,解得或,∴点A(﹣3,0),B(1,0),作PD⊥x轴于点D,∵点P在上,∴设点P(x,),①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即,解得x=(舍去)或x=,∴点P(,2);②设P(x,y),则,∵=OB•OC+AD•PD+(PD+OC)•OD=====,∴当x=时,=,当x=时,=,此时P(,).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.2.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出的值.月份用水量(吨)水费(元)四月3559.5五月80151【答案】3.已知关于x的一元二次方程x2+(k+1)x+=0有两个不相等的实数根.(1)求k的取值范围;(2)当k取最小整数时,求此时方程的解.【答案】(1)k>﹣;(2)x1=0,x2=﹣1.【解析】【分析】(1)由题意得△=(k+1)2﹣4×k2>0,解不等式即可求得答案;(2)根据k取最小整数,得到k=0,列方程即可得到结论.【详解】(1)∵关于x的一元二次方程x2+(k+1)x+=0有两个不相等的实数根,∴△=(k+1)2﹣4×k2>0,∴k>﹣;(2)∵k取最小整数,∴k=0,∴原方程可化为x2+x=0,∴x1=0,x2=﹣1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4.已知关于x的方程(x-3)(x-2)-p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1、x2,且满足x12+x22=3x1x2,求实数p的值.【答案】(1)详见解析;(2)p=±1.【解析】【分析】(1)先把方程化成一般形式,再计算根的判别式,判定△>0,即可得到总有两个不相等的实数根;(2)根据一元二次方程根与系数的关系可得两根和与两根积,再把变形,化成和与乘积的形式,代入计算,得到一个关于p的一元二次方程,解方程即可求解.【详解】证明:(1)(x﹣3)(x﹣2)﹣p2=0,x2﹣5x+6﹣p2=0,△=(﹣5)2﹣4×1×(6﹣p2)=25﹣24+4p2=1+4p2,∵无论p取何值时,总有4p2≥0,∴1+4p2>0,∴无论p取何值时,方程总有两个不相等的实数根;(2)x1+x2=5,x1x2=6﹣p2,∵,∴(x1+x2)2﹣2x1x2=3x1x2,∴52=5(6﹣p2),∴p=±1.考点:根的判别式;根与系数的关系.5.某产品每件成本为20元,经过市场调研发现,这种产品在未来20天内的日销售量(单位:件)是关于时间(单位:天)的一次函数,调研所获的部分数据如下表:时间/天131020日销售量/件98948060这20天中,该产品每天的价格(单位:元/件)与时间的函数关系式为:(为整数),根据以上提供的条件解决下列问题:(1)直接写出关于的函数关系式;(2)这20天中哪一天的日销售利润最大,最大的销售利润是多少?(3)在实际销售的20天中,每销售一件商品就捐赠元()给希望工程,通过销售记录发现,这20天中,每天扣除捐赠后的日销利润随时间的增大而增大,求的取值范围.【答案】(1);(2)在第15天时日销售利润最大,最大利润为612.5元;(3).【解析】【分析】(1)从表格可看出每天比前一天少销售2件,即可确定一次函数关系式;(2)根据日利润=日销售量×每件利润列出函数解析式,然后根据函数性质求最大值,即可确定答案;(3)根据20天中每天扣除捐赠后的日销售利润,根据函数性质求a的取值范围【详解】(1)设该函数的解析式为:m=kx+b由题意得:解得:k=-2,b=100∴关于的函数关系式为:.(2)设前20天日销售利润为元,由题意可知,∵,∴当时,.∴在第15天时日销售利润最大,最大利润为612.5元.(3)由题意得:,∴对称轴为:,∵每天扣除捐赠后的日销利润随时间的增大而增大,且,∴,∴,∴.【点睛】本题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,掌握解决最值问题的方法是解答本题的关键.6.利民商店经销甲、乙两种商品现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.甲、乙两种商品的进货单价各是多少?据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a元,在不考虑其他因素的条件下,当a定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元件,乙种商品的进货单价是6元件(2)当a定为或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】设甲种商品的进货单价是x元件,乙种商品的进货单价是y元件,根据给定的三个信息,可得出关于x,y的二元一次方程组,解之即可得出结论;当零售单价下降a元件时,每天可售出件,根据总利润单件利润销售数量,即可得出关于a的一元二次方程,解之即可得出结论.【详解】设甲种商品的进货单价是x元件,乙种商品的进货单价是y元件,根据题意得:,解得:.答:甲种商品的进货单价是5元件,乙种商品的进货单价是6元件.当零售单价下降a元件时,每天可售出件,根据题意得:,整理得:,解得:,.答:当a定为或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;找准等量关系,正确列出一元二次方程.7.已知:关于x的方程x2-4mx+4m2-1=0.(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2【答案】(1)有两个不相等的实数根(2)周长为13或17【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m=3时,原方程为x2﹣12x+35=0,解得:x1=5,x2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x=5求出m值.8.∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),五月份用水量超过m吨(或水费是按来计算的)则有151=1.7×80+(80-m)×即m2-80m+1500=0解得m1=30,m2=50.又∵四月份用水量为35吨,m1=30<35,∴m1=30舍去.∴m=50【解析】9.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为元/千克,元/千克.由题得:解之得:答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:解之得:,经检验,,均符合题意答:的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.10.已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.【答案】(1)m≤4;(2)3≤m≤4.【解析】试题分析:(1)根据判别式的意义得到△=(-6)2-4(2m+1)≥0,然后解不等式即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论