



付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGEPAGE1第2课时充要条件A级:“四基”巩固训练一、选择题1.函数y=x2+mx+1的图像关于直线x=1对称的充要条件是()A.m=-2 B.m=2C.m=-1 D.m=1答案A解析函数y=x2+mx+1的图像关于直线x=1对称的充要条件是-eq\f(m,2×1)=1,即m=-2.故选A.2.已知p:x≤-1或x≥3,q:x>5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析由{x|x>5}是{x|x≤-1或x≥3}的真子集,可知p是q的必要不充分条件.故选B.3.若x,y∈R,则“x≤1,y≤1”是“x2+y2≤1”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析因为若x,y∈R,x≤1,y≤1,则x2+y2≤1不一定成立,所以充分性不成立.若x2+y2≤1,则可得x≤1且y≤1,所以必要性成立.故选B.4.已知a,b是实数,则“a<0且b<0”是“a+b<0且ab>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析“a<0且b<0”可以推出“a+b<0且ab>0”,反之也是成立的.故选C.5.如果A是B的必要不充分条件,B是C的充要条件,D是C的充分不必要条件,那么A是D的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析根据题意列出A,B,C,D的关系如图,显然有D⇒C⇒B⇒A,即D⇒A;可从集合的角度考虑得出Aeq\o(⇒,/)D.故选B.二、填空题6.下列命题中是真命题的是________(填序号).①“x>2且y>3”是“x+y>5”的充要条件;②“x>1”是“|x|>0”的充分不必要条件;③“b2-4ac<0”是“f(x)=ax2+bx+c(a≠0)的函数值恒小于0”的充要条件;④“三角形的三边满足勾股定理”的充要条件是“此三角形为直角三角形”.答案②④解析①因为由x>2且y>3⇒x+y>5,但由x+y>5不能推出x>2且y>3,所以“x>2且y>3”是“x+y>5”的充分不必要条件.②因为由x>1⇒|x|>0,而由|x|>0不能推出x>1,所以“x>1”是“|x|>0”的充分不必要条件.③因为由b2-4ac<0不能推出f(x)=ax2+bx+c(a≠0)的函数值恒小于0,而由f(x)=ax2+bx+c(a≠0)的函数值恒小于0⇒b2-4ac<0,a<0,所以“b2-4ac<0”是“f(x)=ax2+bx+c(a≠0)的函数值恒小于0”的必要不充分条件.④由三角形的三边满足勾股定理⇒此三角形为直角三角形,由三角形为直角三角形⇒该三角形的三边满足勾股定理,故②④是真命题.7.“x>0成立”是“|x|=x成立”的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).答案充分不必要解析因为|x|=x⇒x≥0,{x|x>0}{x|x≥0},由此可知“x>0成立”是“|x|=x成立”的充分不必要条件.8.“方程x2-2x-a=0无实根”的充要条件是_______.答案a<-1解析方程x2-2x-a=0无实根,所以有Δ=4+4a<0,解得a<-1.反之,若a<-1,则Δ<0,方程x2-2x-a=0无实根.故“方程x2-2x-a=0无实根”的充要条件是a<-1.三、解答题9.证明:ax2+bx+c=0有一个根为1的充要条件是a+b+c=0.证明①充分性:由a+b+c=0得a=-b-c,代入ax2+bx+c=0,得(-b-c)x2+bx+c=0,即(1-x)(bx+cx+c)=0.∴ax2+bx+c=0有一个根为1.②必要性:由ax2+bx+c=0有一个根为1,把它代入方程即有a+b+c=0.综上可知,ax2+bx+c=0有一个根为1的充要条件是a+b+c=0.10.已知p:0<m<eq\f(1,3);q:方程mx2-2x+3=0有两个同号且不相等的实数根,那么p是q的什么条件?解设x1,x2是方程mx2-2x+3=0的两个根,则方程mx2-2x+3=0有两个同号且不相等的实数根等价于eq\b\lc\{\rc\(\a\vs4\al\co1(m≠0,,Δ=4-4×3×m>0,⇔0<m<\f(1,3),,x1x2=\f(3,m)>0,))因此,p是q的充要条件.B级:“四能”提升训练1.求方程x2+kx+1=0与x2+x+k=0有一个公共实根的充要条件.解eq\b\lc\{\rc\(\a\vs4\al\co1(x2+kx+1=0,,x2+x+k=0))⇔eq\b\lc\{\rc\(\a\vs4\al\co1(x2-x2+xx+1=0,,x2+x+k=0))⇔eq\b\lc\{\rc\(\a\vs4\al\co1(1-x3=0,,x2+x+k=0))⇔eq\b\lc\{\rc\(\a\vs4\al\co1(x=1,,k=-2.))所以两方程有一个公共实根的充要条件为k=-2.2.设x,y∈R,求证:|x+y|=|x|+|y|成立的充要条件是xy≥0.证明①充分性:如果xy≥0,则有xy=0和xy>0两种情况,当xy=0时,不妨设x=0,则|x+y|=|x|+|y|成立.当xy>0,即x>0,y>0或x<0,y<0时.又当x>0,y>0时,|x+y|=x+y,|x|+|y|=x+y,∴等式成立.当x<0,y<0时,|x+y|=-(x+y),|x|+|y|=-x-y=-(x+y),∴等式成立.总之,当xy≥0时,|x+y|=|x|+|
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 其他档案管理办法
- 养犬管理办法酒泉
- 内供材料管理办法
- 内河垂钓管理办法
- 内部用房管理办法
- 内部顾客管理办法
- 军品认证管理办法
- 军队学位管理办法
- 农场禁牧管理办法
- 农机商户管理办法
- 教学案例 长方形的面积“黄冈赛”一等奖
- GB/T 35694-2017光伏发电站安全规程
- GB/T 19418-2003钢的弧焊接头缺陷质量分级指南
- GA/T 992-2012停车库(场)出入口控制设备技术要求
- GA/T 828-2009电子物证软件功能检验技术规范
- 对虾产品质量分级要素及评价技术课件
- 共价有机骨架材料COFs教学讲义课件
- 安全手册(中英文版)
- 粉末冶金学(全套课件325P)
- 2022年《旅游景区游客容量计算通用规范》
- LNG接收站运行仿真系统设计
评论
0/150
提交评论