版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中PAGE1初中2018北京朝阳初三(上)期末数学2018.1一、选择题(本题共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个.1.如图,利用刻度尺和三角尺测得圆的直径是(A)3cm(B)3.5cm(C)4cm(D)7.5cm2.下列事件中,随机事件是(A)任意画一个圆的内接四边形,其对角互补(B)现阶段人们乘高铁出行在购买车票时,采用网络购票方式(C)从分别写有数字1,2,3的三个纸团中随机抽取一个,抽到的数字是0(D)通常情况下,北京在大寒这一天的最低气温会在0℃以下3.下列图形中,既是轴对称图形又是中心对称图形的是(A)(B)(C)(D)4.小楠参观中国国家博物馆时看到两件“王字铜衡”,这是我国古代测量器物重量的一种比较准确的衡器,体现了杠杆原理.小楠决定自己也尝试一下,她找了一根长100cm的匀质木杆,用细绳绑在木杆的中点O并将其吊起来,在中点的左侧距离中点25cm处挂了一个重1.6N的物体,在中点的右侧挂了一个苹果,当苹果距离中点20cm时木杆平衡了,可以估计这个苹果的重大约是(A)1.28N(B)1.6N(C)2N(D)2.5N5.如图,△ABC∽△A’B’C’,AD和A’D’分别是△ABC和△A’B’C’的高,若AD=2,A’D’=3,则△ABC与△A’B’C’的面积的比为(A)4:9(B)9:4(C)2:3(D)3:26.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=7.则∠BDC的度数是(A)15°(B)30°(C)45°(D)60°第6题图第7题图第8题图7.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A’B’C,则图中阴影部分的面积为(A)2(B)2π(C)4(D)4π8.如图,一条抛物线与x轴相交于M、N两点(点M在点N的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(﹣2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为(A)-1(B)-3(C)-5(D)-7二、填空题(本题共16分,每小题2分)9.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为3,则正六边形ABCDEF的边长为.第9题图第10题图10.如图,把△ABC绕着点A顺时针方向旋转,得到△AB'C',点C恰好在B'C'上,旋转角为α,则∠C'的度数为(用含α的式子表示).11.在反比例函数的图象上有两点A(x1,y1),B(x2,y2),x1<x2<0,y1>y2,则m的取值范围是.12.如图,PA,PB分别与⊙O相切于A,B两点,PO与AB相交于点C,PA=6,∠APB=60°,则OC的长为.第12题图第13题图13.如图,双曲线与抛物线交于点A(x1,y1),B(x2,y2),C(x3,y3),由图象可得不等式组的解集为.14.如图,在平面直角坐标系中,△COD可以看作是△AOB经过若干次图形的变化(平移、轴对称、旋转、位似)得到的,写出一种由△AOB得到△COD的过程:.15.“的估计”有很多方法,下面这个随机模拟实验就是一种,其过程如下:如图,随机撒一把米到画有正方形及其内切圆的白纸上,统计落在圆内的米粒数m与正方形内的米粒数n,并计算频率;在相同条件下,大量重复以上试验,当显现出一定稳定性时,就可以估计出的值为.请说出其中所蕴含的原理:.16.下面是“作顶角为120°的等腰三角形的外接圆”的尺规作图过程.已知:已知:△ABC,AB=AC,∠A=120°.求作:△ABC的外接圆.作法:(1)分别以点B和点C为圆心,AB的长为半径作弧,两弧的一个交点为O;(2)连接BO;(3)以O为圆心,BO为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分)17.小明在学习了如何证明“三边成比例的两个三角形相似”后,运用类似的思路证明了“两角分别相等的两个三角形相似”,以下是具体过程.已知:如图,在△ABC和△A'B'C'中,∠A=∠A',∠B=∠B'.求证:△ABC∽△A'B'C'.证明:在线段A'B'上截取A'D=AB,过点D作DE∥B'C',交A'C'于点E.由此得到△A'DE∽△A'B'C'.∴∠A'DE=∠B'.∵∠B=∠B',∴∠A'DE=∠B.∵∠A'=∠A,∴△A'DE≌△ABC.∴△ABC∽△A'B'C'.小明将证明的基本思路概括如下,请补充完整:(1)首先,通过作平行线,依据,可以判定所作△A'DE与;(2)然后,再依据相似三角形的对应角相等和已知条件可以证明所作△A'DE与;(3)最后,可证得△ABC∽△A'B'C'.18.如图,四边形ABCD是⊙O的内接四边形,对角线AC是⊙O的直径,AB=2,∠ADB=45°.求⊙O半径的长.19.如图,在平面直角坐标系xOy中,点A(3,3),点B(4,0),点C(0,﹣1).(1)以点C为中心,把△ABC逆时针旋转90°,画出旋转后的图形△A′B′C;(2)在(1)中的条件下,①点A经过的路径的长为(结果保留π);②写出点B′的坐标为.20.图中所示的抛物线形拱桥,当拱顶离水面4m时,水面宽8m.水面上升3米,水面宽度减少多少?下面给出了解决这个问题的两种方法.方法一如图1,以上升前的水面所在直线与抛物线左侧交点为原点,以上升前的水面所在直线为x轴,建立平面直角坐标系xOy,这时这条抛物线所表示的二次函数的表达式为;当y=3时,求出此时自变量x的取值,即可解决这个问题.图1方法二如图2,以抛物线顶点为原点,以抛物线的对称轴为y轴,建立平面直角坐标系xOy,这时这条抛物线所表示的二次函数的表达式为;当y=时,求出此时自变量x的取值,即可解决这个问题.图221.有两盏节能灯,每一盏能通电发亮的概率都是50%,按照图中所示的并联方式连接电路,观察这两盏灯发亮的情况.(1)列举出所有可能的情况;(2)求出至少有一盏灯可以发亮的概率.22.如图,在平面直角坐标系xOy中,直线与双曲线交于M(a,2),N(1,b)两点.(1)求k,a,b的值;(2)若P是y轴上一点,且△MPN的面积是7,直接写出点P的坐标.
23.如图,正方形ABCD的边长为2,E是CD中点,点P在射线AB上,过点P作线段AE的垂线段,垂足为F.(1)求证:△PAF∽△AED;(2)连接PE,若存在点P使△PEF与△AED相似,直接写出PA的长24.如图,在△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,⊙O的切线DE交AC于点E.(1)求证:E是AC中点;(2)若AB=10,BC=6,连接CD,OE,交点为F,求OF的长.25.△ACB中,∠C=90°,以点A为中心,分别将线段AB,AC逆时针旋转60°得到线段AD,AE,连接DE,延长DE交CB于点F.(1)如图1,若∠B=30°,∠CFE的度数为;(2)如图2,当30°<∠B<60°时,①依题意补全图2;②猜想CF与AC的数量关系,并加以证明.图1图2
26.如图,直线AM和AN相交于点A,∠MAN=30°,在射线AN上取一点B,使AB=6cm,过点B作BC⊥AM于点C,D是线段AB上的一个动点(不与点B重合),过点D作CD的垂线交射线CA于点E.(1)确定点B的位置,在线段AB上任取一点D,根据题意,补全图形;(2)设AD=xcm,CE=ycm,探究函数y随自变量x的变化而变化的规律.①通过取点、画图、测量,得到了x与y的几组对应值,如下表:x/cm012345y/cm5.24.43.83.58.1(要求:补全表格,相关数值保留一位小数)②建立平面直角坐标系xOy,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;③结合画出的函数图象,解决问题:当AD为Rt△CDE斜边CE上的中线时,AD的长度约为cm(结果保留一位小数).27.已知抛物线l1与l2形状相同,开口方向不同,其中抛物线l1:交x轴于A,B两点(点A在点B的左侧),且AB=6;抛物线l2与l1交于点A和点C(5,n).(1)求抛物线l1,l2的表达式;(2)当x的取值范围是时,抛物线l1与l2上的点的纵坐标同时随横坐标的增大而增大;(3)直线MN∥y轴,交x轴,l1,l2分别相交于点P(m,0),M,N,当1≤m≤7时,求线段MN的最大值.28.在平面直角坐标系xOy中,点A(0,6),点B在x轴的正半轴上.若点P,Q在线段AB上,且PQ为某个一边与x轴平行的矩形的对角线,则称这个矩形为点P,Q的“X矩形”.下图为点P,Q的“X矩形”的示意图.(1)若点B(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年地下管道整体维修与监测技术
- 2026春招:新材料题库及答案
- 2026年基于健康监测数据的桥梁抗震评估
- 护理专业发展政策与挑战
- 医疗安全管理与风险防范
- 基于大数据的疾病预测模型构建
- 2026年北京科技大学天津学院高职单招职业适应性测试参考题库带答案解析
- 2026年黑龙江三江美术职业学院高职单招职业适应性测试备考题库有答案解析
- 医疗保险产品创新与设计
- 医院护理质量管理与职业素养
- 安全生产大整顿的个人反思材料
- 2025年自然资源行政执法工作总结
- 会计招聘笔试题及答案
- 会阴按摩术在产科临床的应用与规范化护理实践
- 吸音顶棚施工方案
- 【语文】重庆市沙坪坝区树人小学小学一年级上册期末试题
- 2025年国家开放大学(电大)《企业战略与政策》期末考试备考题库及答案解析
- 储藏物害虫与防治课件
- 中西医结合外科学(副高)2025年考试试题及答案
- 吞咽功能指南解读
- 脑卒中吞咽障碍评估护理
评论
0/150
提交评论