专题14 旋转在几何模型中的应用(解析版)_第1页
专题14 旋转在几何模型中的应用(解析版)_第2页
专题14 旋转在几何模型中的应用(解析版)_第3页
专题14 旋转在几何模型中的应用(解析版)_第4页
专题14 旋转在几何模型中的应用(解析版)_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学八年级下暑假预习专题训练专题十四旋转在几何模型中的应用【专题导航】目录【考点一手拉手模型中的旋转】.......................................1【考点二对角互补模型中的旋转】.....................................14【考点三角含半角模型中的旋转】.....................................27【聚焦考点1】手拉手模型遇见平方等式,要用手拉手模型;构造等腰直角三角形,构造全等三角形,等量代换是解题三要素。等腰图形有旋转,辩清共点旋转边,关注三边旋转角,全等思考边角边。鸡爪图,三线段,绕着顶点转一转.【典例剖析1】【典例1-1】[问题提出](1)如图①,均为等边三角形,点分别在边上.将绕点沿顺时针方向旋转,连结.在图②中证明.[学以致用](2)在(1)的条件下,当点在同一条直线上时,的大小为度.[拓展延伸](3)在(1)的条件下,连结.若直接写出的面积的取值范围.思路点拨】(1)根据“手拉手”模型,证明即可;(2)分“当点E在线段CD上”和“当点E在线段CD的延长线上”两种情况,再根据“手拉手”模型中的结论即可求得的大小;(3)分别求出的面积最大值和最小值即可得到结论【详解】(1)均为等边三角形,,,,即在和中;(2)当在同一条直线上时,分两种情况:①当点E在线段CD上时,如图,∵是等边三角形,,,由(1)可知,,,②当点E在线段CD的延长线上时,如图,是等边三角形,,由(1)可知,,综上所述,的大小为或(3)过点A作于点F,当点D在线段AF上时,点D到BC的距离最短,此时,点D到BC的距离为线段DF的长,如图:是等边三角形,,,此时;当D在线段FA的延长线上时,点D到BC的距离最大,此时点D到BC的距离为线段DF的长,如图,是等边三角形,,,,此时,;综上所述,的面积S取值是【点评】利用“手拉手”模型,构造对应边“拉手线”组成的两个三角形全等是解题关键【典例1-2】如图,正方形和正方形(其中),的延长线与直线交于点H.(1)如图1,当点G在上时,求证:;(2)将正方形绕点C旋转一周.①如图2,当点E在直线右侧时,判断的数量关系并证明;②当时,若,请直接写出线段的长.【答案】(1)证明见解析(2)①,证明见解析;②或【分析】(1)证明,即可得到,再由角的等量代换即可证明;(2)①在线段上截取,连接,证明,得到为等腰直角三角形,再利用等腰直角三角形的边角性质即可;②分两种情况,一是如图3所示,当D,G,E三点共线时,,连接.求出BD,设,则.在中,利用勾股定理列出方程解答;二是如图4所示,当B,H,G三点共线时,,连接.设,中利用勾股定理列出方程即可解答.【详解】(1)证明:如图1,∵四边形和均为正方形,∴,,

∴.∴.

又∵,∴.∴.(2)解:①,证明如下:如图所示,在线段上截取,连接.由(1)可知,,又∵,∴.∴.

∴,即.∴为等腰直角三角形.∴.∴,∴.

②第一种情况:如图3所示,当D,G,E三点共线时,,此时G、H重合,连接.由①可知,且.又∵,∴.设,则.∴在中,由勾股定理得.∴,解得(负值舍),∴;第二种情况:如图4所示,当B,H,G三点共线时,,连接.设,∵,∴.在中,由勾股定理得.∴.解得,∴∴的长为或.【点评】本题考查了正方形的性质、全等三角形的性质与判定,勾股定理,等腰直角三角形的性质与判定等知识点,解题的关键是熟知上述知识点,并正确作出辅助线.针对训练1【变式1-1】如图,△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如图1,当α=90°时,∠AMD的度数为°(2)如图2,当α=60°时,∠AMD的度数为°(3)如图3,当△OCD绕O点任意旋转时,∠AMD与α是否存在着确定的数量关系?如果存在,请你用表示∠AMD,并图3进行证明;若不确定,说明理由.【思路点拨】(1)如图1中,设OA交BD于K.根据“手拉手”模型证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,可得∠AMK=∠BOK=90°;(2)如图2中,设OA交BD于K.根据“手拉手”模型1证明△BOD≌△AOC,推出∠OBD=∠OAC,由∠AKM=∠BKO,推出∠AMK=∠BOK=60°;(3)如图3中,设OA交BD于K.根据“手拉手”模型3证明△BOD≌△AOC,根据“手拉手”模型中的结论2可得∠AMD=180°-α.【详解】(1)如图1中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=90°.故答案为90.(2)如图2中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKM=∠BKO,∴∠AMK=∠BOK=60°.故答案为60.(3)如图3中,设OA交BD于K.∵OA=OB,OC=OD,∠AOB=∠COD=α,∴∠BOD=∠AOC,∴△BOD≌△AOC,∴∠OBD=∠OAC,∵∠AKO=∠BKM,∴∠AOK=∠BMK=α.∴∠AMD=180°﹣α.【点评】“手拉手”模型中,两条“拉手线”所在直线的夹角与初始图形中公共顶点对应的角相等或互补。【变式1-2】观察猜想如图1,有公共直角顶点A的两个不全等的等腰直角三角尺叠放在一起,点B在AD上,点C在AE上.(1)在图1中,你发现线段BD,CE的数量关系是___________,直线BD,CE的位置关系是________.操作发现(2)将图1中的绕点A逆时针旋转一个锐角得到图2,这时(1)中的两个结论是否成立?作出判断并说明理由;拓广探索(3)如图3,若只把“有公共直角顶点A的两个不全等的等腰直角三角尺”改为“有公共顶角为∠A(锐角)的两个不全等等腰三角形”,绕点A逆时针旋转任意一个锐角,这时(1)中的两个结论仍然成立吗?作出判断,不必说明理由.【答案】(1),;(2)将图1中的绕点A逆时针旋转一个锐角时,两个结论成立.理由见解析;(3)结论成立;结论不成立.【思路点拨】(1)根据△ABC和△ADE是等腰直角三角形,得到AB=AC,AD=AE,∠A=90°,即可得出结论;(2)由旋转的性质得到∠DAB=∠EAC.根据“手拉手”模型2证明△ABD≌△ACE,得出BD=CE.再根据“手拉手”模型2的结论2可得出.(3)根据“手拉手”模型3证明△ABD≌△ACE,可得BD=CE成立,再根据“手拉手”模型3的结论2可得出BD⊥CE不成立.【详解】(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠A=90°,∴BD=CE,BD⊥CE.故答案为:BD=CE,BD⊥CE.(2)将图1中的△ABC绕点A逆时针旋转一个锐角时,两个结论成立.理由如下:由旋转得:∠DAB=∠EAC.又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS).∴BD=CE.如图,延长DB,交CE于点F,交AE于点O.∵△ABD≌△ACE,∴∠ADB=∠AEC.∵∠AOD=∠EOF.∴∠OFE=∠OAD.∵∠OAD=90°,∴∠DFE=90°,即BD⊥CE.(3)结论BD=CE成立,结论BD⊥CE不成立.理由如下:由旋转得:∠DAE=∠BAC,∴∠DAB=∠EAC.又∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS).∴BD=CE.延长DB交CE于M,BD与AE交于点N.∵△ABD≌△ACE,∴∠MEA=∠BDA.∵∠ENM=∠DNA,∴∠EMN=∠EAD.∵∠EAD≠90°,∴∠EMN≠90°,∴BD⊥CE不成立.【点评】对于以等腰三角形的顶点为旋转点,进行适当旋转的题目,连接对应点构造新的三角形,根据“手拉手”模型3证明三角形全等即可解决问题【能力提升1】【提升1-1】如图,在中,,D、E分别是、的中点,.(1)如图1,若,求的长度(用含a的代数式表示);(2)如图2,将绕点A顺时针旋转,旋转角为,连接、,判断与的数量关系,并说明理由;(3)在(2)的条件下,当的外心在三角形的外部时,请直接写出的取值范围.【答案】(1)2a;(2)BD=CE,理由见详解;(3)0°<α<60°或90°<α<180°.【解析】【分析】(1)由题意直接根据三角形中位线定理进行分析即可解答;(2)根据题意先证明△DAB≌△EAC,进而根据全等三角形的性质分析即可得到答案;(3)根据题意分∠AEC=90°、∠EAC=90°两种情况求出α,根据三角形的外心的概念进行解答.【详解】解:(1)∵D、E分别是AB,AC的中点,,∴BC=2DE=2a;(2)BD=CE,理由如下:∵D、E分别是AB,AC的中点,AB=AC,∴AD=AE,由旋转变换的性质可知,∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),∴BD=CE;(3)当△ACE的外心在三角形的外部时,△ACE为钝角三角形,当∠AEC=90°时,取AC的中点H,连接EH,则EH=AC=AH,由题意得,AE=AH,∴AE=AH=EH,∴△AEH为等边三角形,∴∠EAH=60°,∴当0°<α<60°时,△ACE为钝角三角形,当∠EAC=90°时,α=90°,∴90°<α<180°时,△ACE为钝角三角形,综上所述:当△ACE的外心在三角形的外部时,0°<α<60°或90°<α<180°.【点评】本题考查的是旋转变换的性质和三角形的外心的概念以及全等三角形的判定和性质,熟练掌握三角形的外接圆圆心的概念、全等三角形的判定定理和性质定理是解题的关键.【提升1-2】已知在中,,过点引一条射线,是上一点.【问题解决】(1)如图1,若,射线在内部,,求证:.小明同学展示的做法是:在上取一点使得,通过已知的条件,从而求得的度数,请你帮助小明写出证明过程;【类比探究】(2)如图2,已知.①当射线在内,求的度数;②当射线在下方,如图3所示,请问的度数会变化吗?若不变,请说明理由,若改变,请求出的度数【详解】证明:(1)在上取一点使得,∵,∴为等边三角形,∵∴为等边三角形,∴,∴≌(),∴,∴;(2)①如图2,在上取一点,使得,∵,且,∴,∴,∴∴≌(),∴,∴,②会变,如图3,在延长线上取一点,使得同理可得:≌(),∴,∴.【点评】本题考查了等边三角形性质,全等三角形判定,构造手拉手模型是解题关键.【聚焦考点2】对角互补模型的特征:外观呈现四边形,且对角和为180°。主要:含90°对角互补,含120°的对角互补两种类型。解决此类题型常用到的辅助线画法主要有两种:旋转法和过顶点作两垂线。【典例剖析2】【典例2-1】如图,在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OA=OB,点C在第一象限,OC=3,连接BC,AC,若∠BCA=90°,则BC+AC的值为_________.【答案】【分析】可将△OBC绕着O点顺时针旋转90°,所得的图形与△OAC正好拼成等腰直角三角形BC+AC等于等腰三角形的斜边CD.【详解】解:将△OBC绕O点旋转90°,∵OB=OA∴点B落在A处,点C落在D处且有OD=OC=3,∠COD=90°,∠OAD=∠OBC,在四边形OACB中∵∠BOA=∠BCA=90°,∴∠OBC+∠OAC=180°,∴∠OAD+∠OAC=180°∴C、A、D三点在同一条直线上,∴△OCD为等要直角三角形,根据勾股定理CD2=OC2+OD2即CD2=32+32=18解得CD=即BC+AC=.【点评】本题考查旋转的性质,旋转前后的图形对应边相等,对应角相等.要求两条线段的长,可利用作图的方法将两条线段化成一条线段,再求这条线段的长度即可,本题就是利用旋转的方法做到的,但做本题时需注意,一定要证明C、A、D三点在同一条直线上.本题还有一种化一般为特殊的方法,因为答案一定可考虑CB⊥y轴的情况,此时四边形OACB刚好是正方形,在做选择或填空题时,也可以起到事半功倍的效果.【典例2-2】感知:如图①,平分,,.判断与的大小关系并证明.探究:如图②,平分,,,与的大小关系变吗?请说明理由.应用:如图③,四边形中,,,,则与差是多少(用含的代数式表示)【答案】感知:,证明见详解;探究:与的大小关系不变,理由见详解;应用:与差是.【分析】感知:根据角平分线的性质定理即可求证;探究:过点D作DE⊥AB于点E,DF⊥AC,交AC延长线于点F,根据角平分线的性质定理可得DE=DF,由题意可得∠B=∠DCF,进而可证△DEB≌△DFC,然后问题可求证;应用:过点D作DH⊥AB于点H,DG⊥AC,交AC的延长线于点G,连接AD,由题意易证△DHB≌△DGC,则有DH=DG,进而可得AG=AH,然后根据等腰直角三角形的性质可得,则有,最后问题可求解.【详解】感知:,理由如下:∵,,∴,即,∵平分,∴;探究:与的大小关系不变,还是相等,理由如下:过点D作DE⊥AB于点E,DF⊥AC,交AC延长线于点F,则∠DEB=∠DFC=90°,如图所示:∵平分,∴DE=DF,∵,,∴∠B=∠DCF,∴△DEB≌△DFC(AAS),∴;应用:过点D作DH⊥AB于点H,DG⊥AC,交AC的延长线于点G,连接AD,如图所示:∵,,∴,∵,∴,∵,,∴△DHB≌△DGC(AAS),且△DHB与△DGC都为等腰直角三角形,∴,由勾股定理可得,∴,∴,在Rt△AHD和Rt△AGD中,AD=AD,DH=DG,∴Rt△AHD≌Rt△AGD(HL),∴,∴,∴.【点睛】本题主要考查角平分线的性质定理、全等三角形的性质与判定及勾股定理,熟练掌握角平分线的性质定理、全等三角形的性质与判定及勾股定理是解题的关键.针对训练2【变式2-1】已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,我们可得结论:AB+AD=AC;在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则上面的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;【解】(2)在图3中:(只要填空,不需要证明).①若∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=AC(用含α的三角函数表示).【答案】(1)成立,证明如下;(2),.【详解】试题分析:(1)作CE⊥AM、CF⊥AN于E、F.根据角平分线的性质,得CE=CF,根据等角的补角相等,得∠CDE=∠ABC,再根据AAS得到△CDE≌△CBF,则DE=BF.再由∠MAN=120°,AC平分∠MAN,得到∠ECA=∠FCA=30°,从而根据30°所对的直角边等于斜边的一半,得到AE=AC,AF=AC,等量代换后即可证明AD+AB=AC仍成立.试题解析:(1)仍成立.证明:过点C分别作AM、AN的垂线,垂足分别为E、F∵AC平分∠MAN∴CE=CF∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°∴∠CDE=∠ABC又∠CED=∠CFB=90°,∴△CED≌△CFB(AAS)∵ED=FB,∴AD+AB=AE-ED+AF+FB=AE+AF∴AE+AF=AC∴AD+AB=AC(2),.【点评】(1)角平分线的性质;(2)全等三角形的判定与性质;(3)含30度角的直角三角形.【变式2-2】在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.【答案】(1)AC=AD+AB;(2)成立;(3)AD+AB=AC.【分析】(1)结论:AC=AD+AB,只要证明AD=AC,AB=AC即可解决问题;(2)(1)中的结论成立.以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,只要证明△DAC≌△BEC即可解决问题;(3)结论:AD+AB=AC.过点C作CE⊥AC交AB的延长线于点E,只要证明△ACE是等腰直角三角形,△DAC≌△BEC即可解决问题;【详解】(1)AC=AD+AB.理由如下:如图1中,在四边形ABCD中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC平分∠DAB,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=AC,同理AD=AC,∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,如图2,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AE=AD+AB.(3)结论:AD+AB=AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,如图3,∵∠D+∠ABC=180°,∠DAB=90°,∴∠DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°,∴AC=CE.又∵∠D+∠ABC=180°,∠ABC+∠CBE=180°,∴∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,AC=CE,∴AE==AC,∴AD+AB=AC.【点评】本题是四边形探究的综合题,属于压轴题,考查了全等三角形的判定与性质,等边三角形的判定与性质,等腰三角形的判定与性质,线段的和差倍分关系,对于线段和差问题,常常采用截长法或补短法构造辅助线,通过全等三角形来解决.【能力提升2】【提升2-1】如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.【答案】(1);(2)AD﹣DC=BD;(3)BD=AD=+1.【解析】【分析】(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系(2)过点B作BE⊥BD,交MN于点E.AD交BC于O,证明,得到,,根据为等腰直角三角形,得到,再根据,即可解出答案.(3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.在DA上截取一点H,使得CD=DH=1,则易证,由即可得出答案.【详解】解:(1)如图1中,由题意:,∴AE=CD,BE=BD,∴CD+AD=AD+AE=DE,∵是等腰直角三角形,∴DE=BD,∴DC+AD=BD,故答案为.(2).证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.∵,∴,∴.∵,,,∴,∴.又∵,∴,∴,,∴为等腰直角三角形,.∵,∴.(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,∴.【点评】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.【提升2-2】如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.【答案】(1)EF=BE+DF;(2)EF=DF−BE;证明见解析;(3).【解析】【分析】(1)将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,首先证明F,D,G三点共线,求出∠EAF=∠GAF,然后证明△AFG≌△AFE,根据全等三角形的性质解答;(2)将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE',首先证明E',D,F三点共线,求出∠EAF=∠E'AF,然后证明△AFE≌△AFE',根据全等三角形的性质解答;(3)将△ABD绕点A逆时针旋转至△ACD',使AB与AC重合,连接ED',同(1)可证△AED≌AED',求出∠ECD'=90°,再根据勾股定理计算即可.【详解】解:(1)将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,∵∠B+∠ADC=180°,∴∠FDG=180°,即点F,D,G三点共线,∵∠BAE=∠DAG,∠EAF=∠BAD,∴∠EAF=∠GAF,在△AFG和△AFE中,,∴△AFG≌△AFE,∴EF=FG=DG+DF=BE+DF;(2)EF=DF−BE;证明:将△ABE绕点A逆时针旋转,使AB与AD重合,得到△ADE',则△ABE≌ADE',∴∠DAE'=∠BAE,AE'=AE,DE'=BE,∠ADE'=∠ABE,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADE'=∠ADC,即E',D,F三点共线,∵∠EAF=∠BAD,∴∠E'AF=∠BAD−(∠BAF+∠DAE')=∠BAD−(∠BAF+∠BAE)=∠BAD−∠EAF=∠BAD,∴∠EAF=∠E'AF,在△AEF和△AE'F中,,∴△AFE≌△AFE'(SAS),∴FE=FE',又∵FE'=DF−DE',∴EF=DF−BE;(3)将△ABD绕点A逆时针旋转至△ACD',使AB与AC重合,连接ED',同(1)可证△AED≌AED',∴DE=D'E.∵∠ACB=∠B=∠ACD'=45°,∴∠ECD'=90°,在Rt△ECD'中,ED'=,即DE=,故答案为:.【点评】本题考查的是旋转变换的性质、全等三角形的判定和性质以及勾股定理等知识,灵活运用利用旋转变换作图、掌握全等三角形的判定定理和性质定理是解题的关键.【聚焦考点3】角含半角模型角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。【典例剖析3】【典例3-1】如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正确的有()A.①②③④ B.②③ C.②③④ D.③④【分析】利用旋转性质可得△ABF≌△ACD,根据全等三角形的性质一一判断即可.【详解】解:∵△ADC绕A顺时针旋转90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正确,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正确无法判断BE=CD,故①错误,故选:C.【点评】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型.【典例3-2】如图,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°,分别连接EF、BD,BD与AF、AE分别相交于点M、N(1)求证:EF=BE+DF为了证明“EF=BE+DF”,小明延长CB至点G,使BG=DF,连接AG,请画出辅助线并按小明的思路写出证明过程.(2)若BE=2,DF=3,请求出正方形ABCD的边长.(3)请直接写出线段BN、MN、DM三者之间的数量关系【分析】(1)延长BC到G,使BG=DF,连接AG,证得△ABG≌△ADF,△AEF≌△AEG,最后利用等量代换求得答案即可;(2)根据(1)中的结论,设正方形的边长为x,列方程可解答;(3)在AG截取AH=AM,连接NH、BH,证得△ABH≌△ADM,△AMN≌△AHN,最后利用勾股定理求得答案即可.【解析】(1)证明:如图1,延长CB至点G,使BG=DF,连接AG,∵四边形ABCD为正方形,∴AB=AD,∠BAD=∠ADF=∠ABE=∠ABG=90°,在△ABG和△ADF中,AB=AD∠ABG=∠ADF∴△ABG≌△ADF(SAS),∴∠DAF=∠BAG,AF=AG,∴∠GAE=∠BAG+∠BAE=∠DAF+∠BAE=90°﹣45°=45°=∠EAF,在△AEF和△AEG中,AF=AG∠FAE=∠GAE∴△AEF≌△AEG(SAS),∴EF=EG,∵EG=BE+BG,∴EF=BE+DF;(2)解:设正方形的边长为x,∵BE=2,DF=3,∴CE=x﹣2,CF=x﹣3,由(1)得:EF=BE+DF=2+3=5,Rt△CEF中,EF2=CE2+CF2,52=(x﹣2)2+(x﹣3)2,解得:x=6或﹣1(舍),答:正方形ABCD的边长为6.(3)解:BN2+DM2=MN2;理由是:如图2,在AG上截取AH=AM,连接HN、BH,在△AHB和△AMD中,AB=AD∠HAB=∠MAD∴△AHB≌△AMD(SAS),∴BH=DM,∠ABH=∠ADB=45°,又∵∠ABD=45°,∴∠HBN=90°.∴BH2+BN2=HN2.在△AHN和△AMN中,AH=AM∠HAN=∠MAN∴△AHN≌△AMN(SAS),∴MN=HN.∴BN2+DM2=MN2.针对训练3【变式3-1】阅读下面材料:小辉遇到这样一个问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.小辉发现,将△ABD绕点A按逆时针方向旋转90°,得到△ACF,连接EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△FAE≌△DAE,得FE=DE.解△FCE,可求得FE(即DE)的长.请回答:在图2中,∠FCE的度数是90°,DE的长为10.参考小辉思考问题的方法,解决问题:如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,且∠EAF=12∠BAD.猜想线段BE,EF,【分析】对于图2,由旋转性质得到∠ACF=∠B=45°,CF=BD,所以∠FCE=∠ACF+∠ACB=90°,然后利用勾股定理计算EF,即可得到DE;对于图3,将△ABE绕点A按逆时针方向旋转,使AB与AD重合,得到△ADG,根据旋转的性质得BE=DG,AE=AG,∠DAG=∠BAE,∠B=∠ADG,由于∠B+∠ADC=180°,则∠ADG+∠ADC=180°,则可判断点F,D,G在同一条直线上,接着证明△AEF≌△AGF,得到EF=FG,由于FG=DG+FD=BE+DF,于是得到EF=BE+FD.【解析】如图2,∵∠ACF=∠B=45°,∴∠FCE=∠ACF+∠ACB=45°+45°=90°,在Rt△EFC中,∵CF=BD=3,CE=1,∴EF=C∴DE=10故答案为90°;10;如图3,猜想:EF=BE+FD.理由如下:如图,将△ABE绕点A按逆时针方向旋转,使AB与AD重合,得到△ADG,∴BE=DG,AE=AG,∠DAG=∠BAE,∠B=∠ADG,∵∠B+∠ADC=180°,∴∠ADG+∠ADC=180°,即点F,D,G在同一条直线上,∵∠DAG=∠BAE,∴∠GAE=∠BAD,∵∠EAF=12∠∴∠GAF=∠EAF,在△AEF和△AGF中,AE=AG∠EAF=∠GAF∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+FD=BE+DF,∴EF=BE+FD.【变式3-2】如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=30°,BD=43,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.【解析】【分析】将△ACN绕点A逆时针旋转,得到△ABE,由旋转得出∠NAE=90°,AN=AE,∠ABE=∠ACD,∠EAB=∠CAN,求出∠EAM=∠MAN,根据SAS推出△AEM≌△ANM,根据全等得出MN=ME,求出MN=CN+BM,解直角三角形求出DC,即可求出△DMN的周长=BD+DC,代入求出即可.【详解】将△ACN绕点A逆时针旋转,得到△ABE,如图:由旋转得:∠NAE=90°,AN=AE,∠ABE=∠ACD,∠EAB=∠CAN,∵∠BAC=∠D=90°,∴∠ABD+∠ACD=360°﹣90°﹣90°=180°,∴∠ABD+∠ABE=180°,∴E,B,M三点共线,∵∠MAN=45°,∠BAC=90°,∴∠EAM=∠EAB+∠BAM=∠CAN+∠BAM=∠BAC﹣∠MAN=90°﹣45°=45°,∴∠EAM=∠MAN,在△

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论