




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届驻马店市重点中学数学八年级第一学期期末教学质量检测试题测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列各数中,是无理数的是()A. B. C.0 D.2.如图,在Rt△ABO中,∠OBA=90°,A(8,8),点C在边AB上,且,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2) B. C. D.3.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.124.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.195.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对6.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+27.表示实数a与1的和不大于10的不等式是()A.a+1>10 B.a+1≥10 C.a+1<10 D.a+1≤108.一辆客车从甲地开住乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y(千米)与行驶时间式(小时)之间的函数图象如图所示,则下列说法中错误的是()A.客车比出租车晚4小时到达目的地 B.客车速度为60千米时,出租车速度为100千米/时C.两车出发后3.75小时相遇 D.两车相遇时客车距乙地还有225千米9.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.510.若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.6 B.8 C.8或10 D.10二、填空题(每小题3分,共24分)11.若a=2-2,b=()0,c=(-1)3,将a,b,c三个数用“<”连接起来应为_______.12.如图,,,.给出下列结论:①;②;③;④.其中正确结论的序号是__________.13.如果ab>1,ac<1.则直线y=x+不经过第___象限.14.用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.15.在平面直角坐标系中,点(-1,2)关于y轴对称的点的坐标是.16.在平面直角坐标系中,点关于轴的对称点的坐标是__________.17.比较大小______填或号18.若x+y=5,xy=6,则x2+y2+2006的值是_____.三、解答题(共66分)19.(10分)某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为五类,每车乘坐1人、2人、3人、4人、5人分别记为.由调查所得数据绘制了如下的不完整的统计图表,请根据图中信息,解答下列问题:小型汽车每车乘坐人数统计表类别频率0.350.20.05(1)求本次调查的小型汽车数量.(2)求的值.(3)补全条形统计图.20.(6分)如图,直线与双曲线交于A点,且点A的横坐标是1.双曲线上有一动点C(m,n),.过点A作轴垂线,垂足为B,过点C作轴垂线,垂足为D,联结OC.(1)求的值;(2)设的重合部分的面积为S,求S与m的函数关系;(3)联结AC,当第(2)问中S的值为1时,求的面积.21.(6分)如图,△ABC为等腰三角形,AC=BC,△BDC和△CAE分别为等边三角形,AE与BD相交于点F,连接CF并延长,交AB于点G.求证:∠ACG=∠BCG.22.(8分)已知:如图,相交于点.求证:23.(8分)中雅培粹学校举办运动会,全校有3000名同学报名参加校运会,为了解各类运动赛事的分布情况,从中抽取了部分同学进行统计:A.田径类,B.球类,C.团体类,D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)这次统计共抽取了位同学,扇形统计图中的,的度数是;(2)请将条形统计图补充完整;(3)估计全校共多少学生参加了球类运动.24.(8分)计算:(1)(2).25.(10分)解不等式组,并把解集在数轴上表示出来.26.(10分)解不等式(组)(1);(2)
参考答案一、选择题(每小题3分,共30分)1、D【解析】根据无理数的定义,可得答案.【详解】,,0是有理数,是无理数,故选:D.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.2、D【分析】根据已知条件得到AB=OB=8,∠AOB=45°,求得BC=6,OD=BD=4,得到D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),求得直线EC的解析式为y=x+4,解方程组即可得到结论.【详解】解:∵在Rt△ABO中,∠OBA=90°,A(8,8),∴AB=OB=8,∠AOB=45°,∵,点D为OB的中点,∴BC=6,OD=BD=4,∴D(4,0),C(8,6),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,4),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+4,解得,,∴P(,),故选:D.【点睛】本题考查了轴对称-最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.3、C【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故选:C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.4、B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.5、D【详解】试题分析:∵D为BC中点,∴CD=BD,又∵∠BDO=∠CDO=90°,∴在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;所以共有4对全等三角形,故选D.考点:全等三角形的判定.6、D【分析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.【详解】当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.则这条直线解析式为y=﹣x+1.故选D.【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.7、D【分析】根据题意写出不等式即可.【详解】由题意可得:a+1≤1.故选D.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.8、D【分析】观察图形可发现客车出租车行驶路程均为600千米,客车行驶了10小时,出租车行驶了6小时,即可求得客车和出租车行驶时间和速度;
易求得直线AC和直线OD的解析式,即可求得交点横坐标x,即可求得相遇时间,和客车行驶距离,即可解题.【详解】解:(1)∵客车行驶了10小时,出租车行驶了6小时,∴客车比出租车晚4小时到达目的地,故A正确;
(2)∵客车行驶了10小时,出租车行驶了6小时,∴客车速度为60千米/时,出租车速度为100千米/时,故B正确;
(3)∵设出租车行驶时间为x,距离目的地距离为y,
则y=−100x+600,
设客车行驶时间为x,距离目的地距离为y,
则y=60x;
当两车相遇时即60x=−100x+600时,x=3.75h,故C正确;
∵3.75小时客车行驶了60×3.75=225千米,
∴距离乙地600−225=375千米,故D错误;
故选:D.【点睛】本题主要考查了一次函数解析式的实际应用,正确求得一次函数解析式是解题的关键.9、A【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得SABC=SABP+SACP,代入数值,解答出即可.【详解】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=1,∴BF=4,∴△ABF中,AF=3,∴,12=×5×(PD+PE)PD+PE=4.1.故选A.【点睛】考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.10、D【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【详解】解:∵|m-2|+=0,∴m-2=0,n-4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=1.故选D.【点睛】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.二、填空题(每小题3分,共24分)11、c<a<b【分析】先求出各数的值,再比较大小即可.【详解】解:a=2-2=,b=()0=1,c=(-1)3=-1,
∵-1<<1,
∴c<a<b.
故答案为:c<a<b.【点睛】本题考查的是实数的大小比较,将各数化简再比较大小的法则是解答此题的关键.12、①②③【分析】根据三角形的内角和定理求出∠EAB=∠FAC,即可判断①;根据AAS证△EAB≌△FAC,即可判断②;推出AC=AB,根据ASA即可证出③;不能推出CD和DN所在的三角形全等,也不能用其它方法证出CD=DN.【详解】∵∠E=∠F=90∘,∠B=∠C,∵∠E+∠B+∠EAB=180∘,∠F+∠C+∠FAC=180∘,∴∠EAB=∠FAC,∴∠EAB−CAB=∠FAC−∠CAB,即∠1=∠2,∴①正确;在△EAB和△FAC中∴△EAB≌△FAC,∴BE=CF,AC=AB,∴②正确;在△ACN和△ABM中∴△ACN≌△ABM,∴③正确;∵根据已知不能推出CD=DN,∴④错误;【点睛】本题考查全等三角形的判定和性质,解题关键在于根据全等的性质对选项进行判断.13、一【分析】先根据ab>1,ac<1讨论出a、b、c的符号,进而可得出,的符号,再根据一次函数的图象与系数的关系进行解答即可.【详解】解:∵ab>1,ac<1,∵a、b同号,a、c异号,①当a>1,b>1时,c<1,∴>1,<1,∴直线y=-x+过二、三、四象限;②当a<1,b<1时,c>1,∴>1,<1,∴直线y=-x+过二、三、四象限.综上可知,这条直线不经过第一象限,故答案为:一.【点睛】本题考查的是一次函数的图象与系数的关系,以及分类讨论的数学思想,解答此题的关键是根据ab>1,ac<1讨论出a、b、c的符号,进而可得出,的符号.14、23-1【解析】分析:根据不等式的性质3,举出例子即可.详解:根据不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.满足,即可,例如:,3,.故答案为,3,.点睛:考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.15、(1,2)【解析】试题解析:由点(-1,2)关于y轴对称的点的坐标是(1,2).考点:关于x轴、y轴对称的点的坐标.16、【分析】点P的横坐标的相反数为所求的点的横坐标,纵坐标不变为所求点的纵坐标.【详解】解:点关于y轴的对称点的横坐标为-4;纵坐标为2;∴点关于y轴的对称点的坐标为,故答案为:.【点睛】用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.17、>【分析】首先将两个二次根式转换形式,然后比较大小即可.【详解】由题意,得∴故答案为:>.【点睛】此题主要考查二次根式的大小比较,熟练掌握,即可解题.18、1【分析】根据x+y=5,xy=6,利用完全平方公式将题目中的式子变形即可求得所求式子的值.【详解】解:∵x+y=5,xy=6,∴x2+y2+2006=(x+y)2−2xy+2006=52−2×6+2006=25−12+2006=1,故答案为:1.【点睛】本题考查了完全平方公式,利用完全平方公式将题目中的式子变形是解题的关键.三、解答题(共66分)19、(1)160辆;(2),;(3)答案见解析.【分析】(1)根据C类别数量及其对应的频率列式即可解答;(2)用汽车总数÷A类别的频数即可的m,用汽车总数÷D类别的频数即可的m;(2)汽车总数分别乘以B、D对应的频率求得其人数,然后补全图形即可.【详解】(1)(辆),所以本次调查的小型汽车数量为160辆;(2),;(3)类小汽车的数量为类小汽车的数量为.补全条形统计图如下:.【点睛】本题考查了条形统计图和频率分布表,从条形统计图和频率分布表中获取所需信息是解答本题的关键.20、(1);(3);(3).【分析】(1)由题意列出关于k的方程,求出k的值,即可解决问题.(3)借助函数解析式,运用字母m表示DE、OD的长度,即可解决问题.(3)首先求出m的值,求出△COD,△AOB的面积;求出梯形ABDC的面积,即可解决问题.【详解】(1)设A点的坐标为(1,);由题意得:,解得:k=3,即k的值为3.(3)如图,设C点的坐标为C(m,n).则n=m,即DE=m;而OD=m,∴S=OD•DE=m×m=m3,即S关于m的函数解析式是S=m3.(3)当S=1时,m3=1,解得m=3或-3(舍去),∵点C在函数y=的图象上,∴CD==1;由(1)知:OB=1,AB=3;BD=1-3=3;∴S梯形ABDC=(1+3)×3=4,S△AOB=×1×3=1,S△COD=×3×1=1;∴S△AOC=S梯形ABDC+S△COD-S△AOB=4+1-1=4.【点睛】该题主要考查了一次函数与反比例函数图象的交点问题;解题的关键是数形结合,灵活运用方程、函数等知识来分析、判断、求解或证明.21、见解析【分析】根据等边三角形的性质和等腰三角形的性质得出∠FAG=∠FBG,得到FA=FB,推出FC为AB的垂直平分线,根据等腰三角形底边三线合一即可解题.【详解】∵△BDC和△ACE分别为等边三角形,∴∠CAE=∠CBD=60°,∵AC=BC,∴∠CAB=∠CBA,∴∠FAG=∠FBG,∴FA=FB,又∵CA=CB,∴FC为AB的垂直平分线,∴∠ACG=∠BCG.【点睛】本题考查了等边三角形的性质,等腰三角形的性质,线段垂直平分线的判定和性质.掌握等腰三角形底边三线合一的性质是解题的关键.22、见解析【分析】先证明△ABC≌△DCB,再证明△AOB≌△DOC,可得结论.【详解】证明:在△ABC和△DCB中,,∴△ABC≌△DCB(SSS).∴∠A=∠D.在△AOB和△DOC中,,∴△AOB≌△DOC(AAS).∴OA=OD.【点睛】本题考查三角形全等的判定,灵活选用判定方法是解题的关键.23、(1)200,40,36°;(2)见详解;(3)900人.【分析】(1)根据A组的人数为40,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 核电站钢结构模块化吊装工程验收及保修协议
- 返乡标兵就业协议书
- 项目结束清算协议书
- 事故车转让理赔协议书
- ktv管理承包协议书
- pvc水管合同协议书
- 逆风集团攻略协议书
- 门店部分转让协议书
- 养殖羊合作合同协议书
- 修理厂车辆质保协议书
- 万科物业绿化养护管理手册
- 卡车充换电站建议书可行性研究报告备案
- 第十二周《遇见劳动之美点亮成长底色》主题班会
- 世界环境日环保教育班会 课件
- 临床诊疗指南-疼痛学分册
- 2024认定实际施工人法律风险防范与合同完善服务合同3篇
- 2022年新高考全国Ⅱ卷英语高考真题试卷(含详解)
- CT培训课件教学课件
- 舞蹈演出编导排练合同模板
- 【MOOC】人工智能原理-北京大学 中国大学慕课MOOC答案
- 【MOOC】引领世界的中国乒乓-西南交通大学 中国大学慕课MOOC答案
评论
0/150
提交评论