2025届甘肃省金昌市金川区宁远中学八年级数学第一学期期末教学质量检测模拟试题含解析_第1页
2025届甘肃省金昌市金川区宁远中学八年级数学第一学期期末教学质量检测模拟试题含解析_第2页
2025届甘肃省金昌市金川区宁远中学八年级数学第一学期期末教学质量检测模拟试题含解析_第3页
2025届甘肃省金昌市金川区宁远中学八年级数学第一学期期末教学质量检测模拟试题含解析_第4页
2025届甘肃省金昌市金川区宁远中学八年级数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省金昌市金川区宁远中学八年级数学第一学期期末教学质量检测模拟试题教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若多项式与多项式的积中不含x的一次项,则(

)A. B. C. D.2.下面有个汽车标致图案,其中不是轴对称图形为()A. B.C. D.3.若点在第二象限,则点所在象限应该是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,直线,,,则的度数是()A. B. C. D.5.下列运算正确的是()A.3a–2a=1 B.a2·a3=a6 C.(a–b)2=a2–2ab+b2 D.(a+b)2=a2+b26.中国科学院微电子研究所微电子设备与集成技术领域的专家殷华湘说,他的团队已经研发出纳米(米纳米)晶体管.将纳米换算成米用科学记数法表示为()A.米 B.米 C.米 D.米7.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.∠A=∠D C.∠ACB=∠DEB D.AC=DE8.下列各组值代表线段的长度,其中能组成三角形的是()A.,, B.,, C.,, D.,,9.如图,,以的三边为边向外作正方形,其面积分别为,,,且,,则为()A.3 B.4 C.5 D.910.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4二、填空题(每小题3分,共24分)11.在中,,,点在斜边所在的直线上,,线段关于对称的线段为,连接、,则的面积为_______.12.如图,在中,,,边的垂直平分线交,于,,则的周长为__________.13.已知m+2n+2=0,则2m•4n的值为_____.14.在,,,,这五个数中,无理数有________个.15.已知△ABC是边长为6的等边三角形,过点B作AC的垂线l,垂足为D,点P为直线l上的点,作点A关于CP的对称点Q,当△ABQ是等腰三角形时,PD的长度为___________16.若一次函数(为常数)的图象经过点(,9),则____.17.点M(-5,−2)关于x轴对称的点是点N,则点N的坐标是________.18.如图,等边的边长为,则点的坐标为__________.三、解答题(共66分)19.(10分)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m-n)米的正方形,两块试验田的水稻都收获了a千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?20.(6分)如图,在四边形ABCD中,,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.21.(6分)谁更合理?某种牙膏上部圆的直径为2.6cm,下部底边的长为4cm,如图,现要制作长方体的牙膏盒,牙膏盒底面是正方形,在手工课上,小明、小亮、小丽、小芳制作的牙膏盒的高度都一样,且高度符合要求.不同的是底面正方形的边长,他们制作的边长如下表:制作者小明小亮小丽小芳正方形的边长2cm2.6cm3cm3.4cm(1)这4位同学制作的盒子都能装下这种牙膏吗?()(2)若你是牙膏厂的厂长,从节约材料又方便取放牙膏的角度来看,你认为谁的制作更合理?并说明理由.22.(8分)请按要求完成下面三道小题.(1)如图1,∠BAC关于某条直线对称吗?如果是,请画出对称轴尺规作图,保留作图痕迹;如果不是,请说明理由.(2)如图2,已知线段AB和点C(A与C是对称点).求作线段,使它与AB成轴对称,标明对称轴b,操作如下:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3,任意位置的两条线段AB,CD,且AB=CD(A与C是对称点).你能通过对其中一条线段作有限次的轴对称使它们重合吗?如果能,请描述操作方法或画出对称轴(尺规作图,保留作图痕迹);如果不能,请说明理由.23.(8分)如图所示,在△ABC中,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E,连接BE、CE.求证:△ABE≌△ACE.24.(8分)某校八年级(1)班甲、乙两男生在5次引体向上测试中有效次数如下:甲:8,8,7,8,9;乙:5,9,7,10,9;甲乙两同学引体向上的平均数、众数、中位数、方差如下:平均数众数中位数方差甲8b80.4乙a9c3.2根据以上信息,回答下列问题:(1)表格是a=,b=,c=.(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是.班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是;(3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数,中位数,方差.(填“变大”、“变小”或“不变”)25.(10分)如图,将一长方形纸片放在平面直角坐标系中,,,,动点从点出发以每秒1个单位长度的速度沿向终点运动,运动秒时,动点从点出发以相同的速度沿向终点运动,当点、其中一点到达终点时,另一点也停止运动.设点的运动时间为:(秒)(1)_________,___________(用含的代数式表示)(2)当时,将沿翻折,点恰好落在边上的点处,求点的坐标及直线的解析式;(3)在(2)的条件下,点是射线上的任意一点,过点作直线的平行线,与轴交于点,设直线的解析式为,当点与点不重合时,设的面积为,求与之间的函数关系式.26.(10分)(问题原型)如图1,在等腰直角三形ABC中,∠ACB=90°,BC=1.将边AB绕点B顺时针旋转90°得到线段BD,连结CD,过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.(初步探究)如图2.在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积并说明理由.(简单应用)如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连续CD,求△BCD的面积(用含a的代数式表示).

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据题意可列式,然后展开之后只要使含x的一次项系数为0即可求解.【详解】解:由题意得:;因为多项式与多项式的积中不含x的一次项,所以,解得;故选D.【点睛】本题主要考查多项式,熟练掌握多项式的概念是解题的关键.2、C【分析】根据轴对称图形的定义以及性质进行判断即可.【详解】A.属于轴对称图形,正确;B.属于轴对称图形,正确;C.不属于轴对称图形,错误;D.属于轴对称图形,正确;故答案为:C.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的定义以及性质是解题的关键.3、A【分析】根据平面直角坐标系中,点的坐标特征与所在象限的关系,即可得到答案.【详解】∵点在第二象限,∴a<0,b>0,∴b+5>0,1-a>0,∴点在第一象限,故选A.【点睛】本题主要考查平面直角坐标系中,点的坐标特征与所在象限的关系,掌握各个象限内点的横纵坐标的正负性,是解题的关键.4、C【分析】根据平行线的性质,得,结合三角形内角和定理,即可得到答案.【详解】∵,∴,∵,∴=180°-32°-45°=103°,故选C.【点睛】本题主要考查平行线的性质定理以及三角形内角和定理,掌握两直线平行,同位角相等,是解题的关键.5、C【解析】分析:利用合并同类项的法则,同底数幂的乘法以及完全平方公式的知识求解即可求得答案.解答:解:A、3a-2a=a,故本选项错误;B、a2·a3=a5,故本选项错误;C、(a-b)2=a2-2ab+b2,故本选项正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.【详解】请在此输入详解!6、A【分析】本题根据科学记数法进行计算即可.【详解】因为科学记数法的标准形式是,因此纳米=.故答案选A.【点睛】本题主要考查了科学记数法,熟练掌握科学记数法是解题的关键.7、D【分析】本题要判定△ABC≌△DBE,已知AB=DB,∠1=∠2,具备了一组边一个角对应相等,对选项一一分析,选出正确答案.【详解】解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;

B、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.

C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;

D、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;

故选D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8、B【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边解答即可.【详解】因为1+2<3.5,故A中的三条线段不能组成三角形;因为15+8>20,故B中的三条线段能组成三角形;因为5+8<15,故C中的三条线段不能组成三角形;因为4+5=9,故D中的三条线段不能组成三角形;故选:B【点睛】本题考查了三角形的三边关系,掌握两边之和大于第三边,两边之差小于第三边是关键.9、B【分析】先利用正方形的面积公式分别求出正方形S1、S2的边长即BC、AC的长,再利用勾股定理求斜边AB,即可得出S3.【详解】∵S1=1,∴BC2=1,∵S2=3,∴AC2=3,∴在Rt△ABC中,BC2+AC2=AB2,∴S3=AB2=1+3=4;故选:B.【点睛】此题主要考查正方形的面积公式及勾股定理的应用,熟练掌握,即可解题.10、A【分析】根据第1~4组的频数求得第5组的频数,再根据即可得到结论.【详解】解:第5组的频数为:,∴第5组的频率为:,故选:A.【点睛】此题主要考查了频数与频率,正确掌握频率求法是解题关键.二、填空题(每小题3分,共24分)11、4或8【分析】分类讨论①当点D在线段BC上,②当点D在线段BC上时,根据对称的性质结合等腰直角三角形的性质分别求得AC、DF=EF=CF的长,从而可求得答案.【详解】①当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAC=∠EAC,∴DF=EF,∠DFC=∠DFA=90,∵,∴,∵AB=AC,∠BAC=90,∴EF=DF=CF=,AB=AC=,∴AF=AC-CF=,DE=EF+DF=,∴;②当点D在线段BC上时,如图:∵线段AD和线段AE关于AC对称,∴AD=AE,∠DAF=∠EAF,∴DF=EF,∠DFC=90,∵,∴,∵AB=AC,∠BAC=90,∴DF=EF=CF=,AB=AC=,∴AF=AC+CF=,DE=EF+DF=,∴;故答案为:或.【点睛】本题考查了对称的性质,等腰直角三角形的性质,利用等腰直角三角形的性质求得腰长是解题的关键.注意分类讨论.12、12【分析】先根据线段垂直平分线的性质可得,通过观察图形可知周长等于,再根据已知条件代入数据计算即可得解.【详解】∵是的垂直平分线∴∵,∴的周长故答案是:【点睛】本题涉及到的知识点主要是线段垂直平分线的性质,能够灵活运用知识点将求三角形周长的问题进行转化是解题的关键.13、【解析】把2m•4n转化成2m•22n的形式,根据同底数幂乘法法则可得2m•22n=2m+2n,把m+2n=-2代入求值即可.【详解】∵m+2n+2=0,∴m+2n=-2,∴2m•4n=2m•22n=2m+2n=2-2=.故答案为【点睛】本题考查了幂的乘方和同底数幂乘法,掌握幂的乘方和同底数幂乘法的运算法则是解题关键.14、【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在,,,,这五个数中,无理数有,这两个数,【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15、、、或【分析】先根据题意作图,再分①当②当③当④当时四种情况根据等边三角形的性质及对称性分别求解.【详解】∵点A、Q关于CP对称,∴CA=CQ,∴Q在以C为圆心,CA长为半径的圆上∵△ABQ是等腰三角形,∴Q也在分别以A、B为圆心,AB长为半径的两个圆上和AB的中垂线上,如图①,这样的点Q有4个。(1)当时,如图②,过点做∵点A、Q关于CP对称,∴,又∵,∴,∴∵∠OCD=30°,BD⊥AC∴,,∴∴∴(2)当时,如图③同理可得,∴∴(3)当时,如图④是等边三角形,,∴(4)当时,如图⑤是等边三角形,点与点B重合,∴故填:、、或【点睛】此题主要考查等边三角形的性质及对称性的应用,解题的关键是熟知等边三角形的性质及对称性,再根据题意分情况讨论.16、1【分析】把点(,9)代入函数解析式,即可求解.【详解】∵一次函数(为常数)的图象经过点(,9),∴,解得:b=1,故答案是:1.【点睛】本题主要考查一次函数图象上的点的坐标特征,掌握待定系数法,是解题的关键.17、(-5,2)【分析】根据关于x轴对称的点的横纵坐标的特点解答即可.【详解】∵点M(-5,-2)与点N关于x轴对称,

∴点N的横坐标为-5,纵坐标为2,故点N的坐标是:(-5,2).

故答案为:(-5,2).【点睛】本题考查了关于x轴对称的点的特点:两点关于x轴对称,横坐标不变,纵坐标互为相反数.18、【分析】过B作BD⊥OA于D,则∠BDO=90°,根据等边三角形性质求出OD,根据勾股定理求出BD,即可得出答案.【详解】过B作BD⊥OA于D,则∠BDO=90°,∵△OAB是等边三角形,∴OD=AD=OA=×2=,在Rt△BDO中,由勾股定理得:BD=,∴点B的坐标为(,3),故答案为:(,3).【点睛】本题考查了等边三角形的性质,坐标与图形性质和勾股定理等知识点,能正确作出辅助线是解此题的关键.三、解答题(共66分)19、(1)“复兴二号”水稻的单位面积产量高,理由见解析;(2)kg【分析】(1)根据题意分别求出两种水稻得单位产量,比较即可得到结果;(2)根据题意列出算式,计算即可得到结果.【详解】(1)根据题意知,“复兴一号“水稻的实验田的面积为,“复兴二号“水稻的实验田的面积为,∴“复兴一号“水稻的实验田的单位产量为(千克/米2),“复兴二号“水稻的实验田的单位产量为(千克/米2),则-==,∵m、n均为正数且m>n,∴-<0,∴“复兴二号”水稻的单位面积产量高;(2)由(1)知,∴高的单位面积产量比低的单位面积产量高(kg).【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20、(1)证明见解析;(2)证明见解析.【分析】(1)先根据平行线的性质可得,再根据线段中点的定义可得,然后根据三角形全等的判定定理与性质即可得证;(2)先根据三角形全等的性质可得,再根据线段垂直平分线的判定与性质可得,然后根据线段的和差、等量代换即可得证.【详解】(1),,点E是CD的中点,,在和中,,,;(2)由(1)已证:,,又,是线段AF的垂直平分线,,由(1)可知,,.【点睛】本题考查了平行线的性质、三角形全等的判定定理与性质、线段垂直平分线的判定与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.21、(1)小丽和小芳的可以,理由见解析;(2)小丽制作的牙膏盒更合理,理由见解析【分析】(1)分别求出小明、小亮、小丽、小芳制作的牙膏盒的底面正方形的对角线长,然后比较大小即可得出结论;(2)从节约材料又方便取放牙膏的角度来看,应取能装入牙膏的牙膏盒的底面正方形的边长又节约材料的方案.【详解】解:(1)小丽和小芳的可以要把牙膏放入牙膏盒内,则牙膏盒底面对角线长应大于或等于4cm.小明:22+22<42,小亮:+<42小丽:32+32>42,小芳:+>42所以小丽和小芳制作的盒子能装下这种牙膏.(2)小丽制作的牙膏盒更合理.因为她制作的盒子既节约材料又方便取放牙膏.【点睛】此题考查的是勾股定理的应用,掌握勾股定理是解决此题的关键.22、(1)∠BAC关于∠ABC的平分线所在直线a对称,见解析;(2)见解析;(3)其中一条线段作2次的轴对称即可使它们重合,见解析【分析】(1)作∠ABC的平分线所在直线a即可;(2)先连接AC;作线段AC的垂直平分线,即为对称轴b;作点B关于直线b的对称点D;连接CD即为所求.(3)先类比(2)的步骤画图,通过一次轴对称,把问题转化为(1)的情况,再做一次轴对称即可满足条件.【详解】解:(1)如图1,作∠ABC的平分线所在直线a.(答案不唯一)(2)如图2所示:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.(3)如图3所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的角平分线所在直线d即为对称轴,故其中一条线段作2次的轴对称即可使它们重合.【点睛】本题主要考查了利用轴对称变换进行作图,几何图形都可看做是有点组成,在画一个图形的轴对称图形时,是先从确定一些特殊的对称点开始.23、(1)如图所示,见解析;(2)见解析.【分析】(1)根据角平分线的尺规作图方法即可解答;(2)根据AD是△ABC的角平分线,得到∠BAD=∠CAD,再由∠ABC=∠ACB证得AB=AC,即可证明△ABE≌△ACE(SAS).【详解】(1)如图所示:(2)证明:∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∵∠ABC=∠ACB,∴AB=AC,∵在△ABE和△ACE中,∴△ABE≌△ACE(SAS).【点睛】此题考查角平分线的作图方法,角平分线定理的应用,熟记定理内容并熟练应用解题是关键.24、(1)a、b、c的值分别是8、8、9;(2)甲的方差较小,比较稳定;乙的中位数是9,众数是9,获奖次数较多;(3)不变;变小;变小.【分析】(1)根据平均数,中位数和方差的概念计算即可得出答案;(2)通过对比甲,乙两同学的方差,中位数和众数即可得出答案;(3)首先计算乙同学之后的平均数,中位数和方差,然后与之前的进行比较即可得出答案.【详解】(1),因为甲中8共出现3次,次数最多,所以b=8因为乙的有效次数中按顺序排列后处于中间位置的是9,所以中位数c=9;故答案为a、b、c的值分别是8、8、9;(2),∴甲的方差较小,成绩比较稳定,∴选择甲同学代表班级参加年级引体向上比赛;∵乙的中位数是9,众数也是9,∴获奖可能性较大,∴根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛;(3)∵原来的平均数是8,增加一次也是8,∴平均数不变.∵六次成绩排序为5,7,8,9,9,10,∴处于中间位置的数为8,9,∴中位数为,∴中位数变小.后来的方差为,∴方差变小.【点睛】本题主要考查数据的分析,掌握平均数,中位数,众数和方差的概念是解题的关键.25、(1)6-t,t+;(2)D(1,3),y=x+;(3)【分析】(1)根据点E,F的运动轨迹和速度,即可得到答案;(2)由题意得:DF=OF=,DE=OE=5,过点E作EG⊥BC于点G,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案;(3)根据题意得直线直线的解析式为:,从而得M(,3),分2种情况:①当点M在线段DB上时,②当点M在DB的延长线上时,分别求出与之间的函数关系式,即可.【详解】∵,,,∴OA=6,OC=3,∵AE=t×1=t,∴6-t,(t+)×1=t+,故答案是:6-t,t+;(2)当时,6-t=5,t+=,∵将沿翻折,点恰好落在边上的点处,∴DF=OF=,DE=OE=5,过点E作EG⊥BC于点G,则EG=OC=3,CG=OE=5,∴DG=,∴CD=CG-DG=5-4=1,∴D(1,3),设直线的解析式为:y=kx+b,把D(1,3),E(5,0)代入y=kx+b,得,解得:,∴直线的解析式为:y=x+;(3)∵MN∥DE,∴直线直线的解析式为:,令y=3,代入,解得:x=,∴M(,3).①当点M在线段DB上时,BM=6-()=,∴=,②当点M在DB的延长线上时,BM=-6=,∴=,综上所述:.【点睛】本题主要考查一次函数与几何图形的综合,掌握勾股定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论