2024-2025学年河南省洛阳市洛宁县九上数学开学考试试题【含答案】_第1页
2024-2025学年河南省洛阳市洛宁县九上数学开学考试试题【含答案】_第2页
2024-2025学年河南省洛阳市洛宁县九上数学开学考试试题【含答案】_第3页
2024-2025学年河南省洛阳市洛宁县九上数学开学考试试题【含答案】_第4页
2024-2025学年河南省洛阳市洛宁县九上数学开学考试试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024-2025学年河南省洛阳市洛宁县九上数学开学考试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列计算正确的是()A. B. C. D.﹣2、(4分)龙华区某校改造过程中,需要整修校门口一段全长2400m的道路,为了保证开学前师生进出不受影响,实际工作效率比原计划提高了,结果提前8天完成任务,若设原计划每天整个道路x米,根据题意可得方程()A. B.C. D.3、(4分)如图所示,某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3h后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y)是时间(x)的函数,那么这个函数的大致图像只能是()A. B. C. D.4、(4分)一次函数y=x-1的图像向上平移2个单位后,不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5、(4分)下列二次根式中属于最简二次根式的是()A. B. C. D.6、(4分)函数y=2-x+1A.x=3 B.x≤2 C.x<2且x≠3 D.x≤2且x≠37、(4分)某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12124下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为488、(4分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=12km,BC=16km,则M,C两点之间的距离为()A.13km B.12km C.11km D.10km二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)方程x3=8的根是______.10、(4分)如图,在▱ABCD中,AD=8,点E、F分别是BD、CD的中点,则EF=_____.11、(4分)植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有_____棵.12、(4分)《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x尺,可列方程为_____.13、(4分)如图,分别以的斜边,直角边为边向外作等边和,为的中点,,相交于点.若∠BAC=30°,下列结论:①;②四边形为平行四边形;③;④.其中正确结论的序号是______.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.15、(8分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.16、(8分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.17、(10分)如图,正方形的边长为2,边在轴上,的中点与原点重合,过定点与动点的直线记作.(1)若的解析式为,判断此时点是否在直线上,并说明理由;(2)当直线与边有公共点时,求的取值范围.18、(10分)(1)计算:5-+2(2)解不等式组:B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如果点A(1,m)与点B(3,n)都在反比例函数y=(k>0)的图象上,那么代数式m-3n+6的值为______.20、(4分)合作小组的4位同学在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则B坐在2号座位的概率是.21、(4分)双曲线,在第一象限的图象如图,过上的任意一点,作轴的平行线交于点,交轴于点,若,则的值为__________.22、(4分)在函数y=x+2x中,自变量x的取值范围是_______23、(4分)如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点,当AB:AD=___________时,四边形MENF是正方形.二、解答题(本大题共3个小题,共30分)24、(8分)如图①,在平面直角坐标系中,直线:分别与轴、轴交于点、,且与直线:交于点,以线段为边在直线的下方作正方形,此时点恰好落在轴上.(1)求出三点的坐标.(2)求直线的函数表达式.(3)在(2)的条件下,点是射线上的一个动点,在平面内是否存在点,使得以、、、为顶点的四边形是菱形?若存在,直接写出点的坐标;若不存在,请说明理由.25、(10分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?26、(12分)如图,平行四边形中,延长至使,连接交于点,点是线段的中点.(1)如图1,若,,求平行四边形的面积;(2)如图2,过点作交于点,于点,连接,若,求证:.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

根据二次根式的运算法则即可求出答案.【详解】解:(A)原式=2﹣=,故A错误;(B)原式=2,故B错误;(D)原式=﹣,故D错误;故选C.本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.2、A【解析】

直接利用施工时间提前8天完成任务进而得出等式求出答案.【详解】解:设原计划每天整修道路x米,根据题意可得方程:.

故选:A.本题考查由实际问题抽象出分式方程,正确找出等量关系是解题关键.3、A【解析】分析:根据题意中的生产流程,发现前三个小时是生产时间,所以未装箱的产品的数量是增加的,后开始装箱,每小时装的产品比每小时生产的产品数量多,所以未装箱的产品数量是下降的,直至减为零.详解:由题意,得前三个小时是生产时间,所以未装箱的产品的数量是增加的.∵3小时后开始装箱,每小时装的产品比每小时生产的产品数量多,∴3小时后,未装箱的产品数量是下降的,直至减至为零.表现在图象上为随着时间的增加,图象是先上升后下降至0的.故选A.点睛:本题考查了的实际生活中函数的图形变化,属于基础题.解决本题的主要方法是根据题意判断函数图形的大致走势,然后再下结论,本题无需计算,通过观察看图,做法比较新颖.4、D【解析】试题解析:因为一次函数y=x-1的图象向上平移2个单位后的解析式为:y=x+1,所以图象不经过四象限,故选D.考点:一次函数图象与几何变换.5、A【解析】

利用最简二次根式定义判断即可.【详解】A、,是最简二次根式,符合题意;B、,不是最简二次根式,不符合题意;C、,不是最简二次根式,不合题意;D、,,不是最简二次根式,不合题意.故选A.本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6、B【解析】

根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:2-x≥0x-3≠0解得:x≤2故选B本题考查求函数的自变量的取值范围函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数(2)当函数表达式是分式时,考虑分式的分母不能为0(3)当函数表达式是二次根式时,被开方数非负.7、A【解析】

结合表格根据众数、平均数、中位数的概念求解即可.【详解】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为49;平均数为48.6,方差为[(46-48.6)2+2×(47-48.6)2+(48-48.6)2+2×(49-48.6)2+4×(50-48.6)2]≠50;∴选项A正确,B、C、D错误故选:A本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.8、D【解析】

由勾股定理可得AB=20,斜边中线等于斜边的一半,所以MC=1.【详解】在Rt△ABC中,AB2=AC2+CB2,∴AB=20,∵M点是AB中点,∴MC=AB=1,故选D.本题考查了勾股定理和斜边中线的性质,综合了直角三角形的线段求法,是一道很好的问题.二、填空题(本大题共5个小题,每小题4分,共20分)9、2【解析】

直接进行开立方的运算即可.【详解】解:∵x3=8,∴x=38故答案为:2.本题考查了求一个数的立方根.10、1【解析】

由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【详解】解:∵四边形ABCD是平行四边形,

∴BC=AD=8,

∵点E、F分别是BD、CD的中点,

∴EF=BC=×8=1.故答案为1.此题考查了平行四边形的性质与三角形中位线的性质.熟练掌握相关性质是解题关键.11、121【解析】

设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.【详解】设市团委组织部分中学的团员有x人,则树苗有(4x+37)棵,由题意得1≤(4x+37)-6(x-1)<3,去括号得:1≤-2x+43<3,移项得:-42≤-2x<-40,解得:20<x≤21,因为x取正整数,所以x=21,当x=21时,4x+37=4×21+37=121,则共有树苗121棵.故答案为:121.本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.12、(x﹣3)2+64=x2【解析】

设绳索长为x尺,根据勾股定理列出方程解答即可【详解】解:设绳索长为x尺,可列方程为(x﹣3)2+82=x2,故答案为:(x﹣3)2+64=x2本题考查了勾股定理在实际生活中的应用,找出等量关系,正确列出一元二次方程是解题的关键.13、①②③④【解析】

首先证明证明Rt△ADF≌Rt△BAC,结合已知得到AE=DF,然后根据内错角相等两直线平行得到DF∥AE,由一组对边平行且相等可得四边形ADFE是平行四边形,故②正确;由∠DAC=∠DAB+∠BAC=90°,可得∠AHE=90°,故①正确;由2AG=AF可知③正确;在Rt△DBF和Rt△EFA中,BD=FE,DF=EA,可证Rt△DBF≌Rt△EFA,故④正确.【详解】∵△ABD和△ACE都是等边三角形,

∴AD=BD=AB,AE=CE=AC,∠ADB=∠BAD=∠DBA=∠CAE=∠AEC=∠ACE=60°.

∵F是AB的中点,∴∠BDF=∠ADF=30°,∠DFA=∠DFB=90°,BF=AF=AB.

∵∠BAC=30°,∠ACB=90°,AD=2AF.

∴BC=AB,∠ADF=∠BAC,

∴AF=BF=BC.

在Rt△ADF和Rt△BAC中

AD=BA,AF=BC,

∴Rt△ADF≌Rt△BAC(HL),

∴DF=AC,

∴AE=DF.

∵∠BAC=30°,

∴∠BAC+∠CAE=∠BAE=90°,

∴∠DFA=∠EAB,

∴DF∥AE,

∴四边形ADFE是平行四边形,故②正确;∴AD=EF,AD∥EF,设AC交EF于点H,

∴∠DAC=∠AHE.

∵∠DAC=∠DAB+∠BAC=90°,

∴∠AHE=90°,

∴EF⊥AC.①正确;

∵四边形ADFE是平行四边形,

∴2GF=2GA=AF.

∴AD=4AG.故③正确.

在Rt△DBF和Rt△EFA中

BD=FE,DF=EA,

∴Rt△DBF≌Rt△EFA(HL).故④正确,

故答案为:①②③④.本题解题的关键:运用到的性质定理有,直角全等三角形的判定定理HL,平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,全等三角形对应边与对应角相等的性质,平行四边形对角线互相平分与两组对边平行且相等的性质.三、解答题(本大题共5个小题,共48分)14、(1)y=-x+6;(2)12;(3)或.【解析】

(1)利用待定系数法,即可求得函数的解析式;(2)由一次函数的解析式,求出点C的坐标,即OC的长,利用三角形的面积公式,即可求解;(3)当△ONC的面积是△OAC面积的时,根据三角形的面积公式,即可求得N的横坐标,然后分别代入直线OA的解析式,即可求得N的坐标.【详解】(1)设直线AB的函数解析式是y=kx+b,根据题意得:,解得:,∴直线AB的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6,∴;(3)设直线OA的解析式y=mx,把A(4,2)代入y=mx,得:4m=2,解得:,即直线OA的解析式是:,∵△ONC的面积是△OAC面积的,∴点N的横坐标是,当点N在OA上时,x=1,y=,即N的坐标为(1,),当点N在AC上时,x=1,y=5,即N的坐标为(1,5),综上所述,或.本题主要考查用待定系数法求函数解析式,根据平面直角坐标系中几何图形的特征,求三角形的面积和点的坐标,数形结合思想和分类讨论思想的应用,是解题的关键.15、,.【解析】

先对进行化简,再选择-1,0,1代入计算即可.【详解】原式因为且所以当时,原式当时,原式考查了整式的化简求值,解题关键是熟记分式的运算法则.16、(1)直线AB的解析式为y=1x﹣1,(1)点C的坐标是(1,1).【解析】

待定系数法,直线上点的坐标与方程的.(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣1)分别代入解析式即可组成方程组,从而得到AB的解析式.(1)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=1求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.【详解】解:(1)设直线AB的解析式为y=kx+b,∵直线AB过点A(1,0)、点B(0,﹣1),∴{k+b∴直线AB的解析式为y=1x﹣1.(1)设点C的坐标为(x,y),∵S△BOC=1,∴12•1•x=1,解得x=1∴y=1×1﹣1=1.∴点C的坐标是(1,1).17、(1)点在直线上,见解析;(2)的取值范围是.【解析】

(1)把点A代入解析式,进而解答即可;(2)求出直线经过点时的解析式,可知此时t的值,再根据(1)中解析式t的值可得取值范围.【详解】解:(1)此时点在直线上,∵正方形的边长为2∴∵点为中点,∴点,,把点的横坐标代入解析式,得,等于点的纵坐标为2.∴此时点在直线上.(2)由题意可得,点及点,当直线经过点时,设的解析式为()∴解得∴的解析式为.当时,又由,可得当时,∴当直线与边有公共点时,的取值范围是.本题考查了一次函数的性质,一次函数图象上点的坐标特征,正方形的性质,掌握判断点是否在直线上的方法以及利用待定系数法求解析式是解题的关键.18、(1)5;(2)-1≤x<1.【解析】

(1)根据二次根式的性质化简,合并同类二次根式即可;

(2)分别解出两个一元一次不等式,根据不等式组的解集的确定方法解答.【详解】(1)5-+2=-2+6=5;(2),解①得,x<1,解②得,x≥-1,则不等式组的解集为:-1≤x<1.本题考查的是二次根式的加减法、一元一次不等式组的解法,掌握二次根式的加减法法则、解一元一次不等式组的一般步骤是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

点A(1,m)与点B(3,n)都在反比例函数y=(k>0)的图象上,代入可求出m、n,进而求代数式的值.【详解】解;把点A(1,m)、B(3,n)代入y=得:m=3,n=1∴m-3n+1=3-3×1+1=1.故答案为:1.考查反比例函数图象上点的坐标特点,理解函数图象的意义,正确的代入和细心的计算是解决问题的前提.20、.【解析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵坐到1,2,3号的坐法共有6种方法:BCD、BDC、CBD、CDB、DBC、DCB,其中有2种方法(CBD、DBC)B坐在2号座位,∴B坐在2号座位的概率是.21、1【解析】

根据S△AOC-S△BOC=S△AOB,列出方程,求出k的值.【详解】由题意得:S△AOC-S△BOC=S△AOB,

=1,

解得,k=1,

故答案为:1.此题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.根据面积关系得出方程是解题的关键.22、x≥﹣2且x≠0【解析】根据题意得x+2≥0且x≠0,即x≥-2且x≠0.23、1:1【解析】试题分析:当AB:AD=1:1时,四边形MENF是正方形,理由是:∵AB:AD=1:1,AM=DM,AB=CD,∴AB=AM=DM=DC,∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM,∵N、E、F分别是BC、BM、CM的中点,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四边形MENF是平行四边形,∵ME=MF,∠BMC=90°,∴四边形MENF是正方形,即当AB:AD=1:1时,四边形MENF是正方形,故答案为:1:1.点睛:本题考查了矩形的性质、正方形的判定、三角形中位线定理等知识,熟练应用正方形的判定方法是解题关键.二、解答题(本大题共3个小题,共30分)24、(1),,;(2);(3)存在,,,.【解析】

(1)利用一次函数图象上点的坐标特征可求出点B,C的坐标,联立直线l1,l2的解析式成方程组,通过解方程组可求出点A的坐标;

(2)过点A作AF⊥y轴,垂足为点F,则△ACF≌△CDO,利用全等三角形的性质可求出点D的坐标,根据点C,D的坐标,利用待定系数法即可求出直线CD的解析式;

(3)分OC为对角线及OC为边两种情况考虑:①若OC为对角线,由菱形的性质可求出点P的纵坐标,再利用一次函数图象上点的坐标特征可求出点P1的坐标;②若OC为边,设点P的坐标为(m,2m+6),分CP=CO和OP=OC两种情况,利用两点间的距离公式可得出关于m的方程,解之取其负值,再将其代入点P的坐标中即可得出点P2,P3的坐标.【详解】(1)∵直线:,∴当时,;当时,,∴,,解方程组:得:,∴点的坐标为;(2)如图1,作,则,∵四边形为正方形,∴,∵,,∴,∵∴,∴,∵,,∴,∴设直线的解析式为,将、代入得:,解得:,∴直线的解析式为(3)存在①以为对角线时,如图2所示,则PQ垂直平分CO,则点P的纵坐标为:,当y=3时,,解得:x=∴点;②以为边时,如图2,设点P(m,2m+6),当CP=CO时,,解得:(舍去)∴,当OP=OC时,,解得:(舍去)∴综上所述,在平面内是否存在点,使得以、、、为顶点的四边形是菱形,,,.本题考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、待定系数法求一次函数解析式、菱形的性质以及两点间的距离,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B,C的坐标;(2)根据点的坐标,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论