丽江市重点中学2025届数学高一上期末教学质量检测试题含解析_第1页
丽江市重点中学2025届数学高一上期末教学质量检测试题含解析_第2页
丽江市重点中学2025届数学高一上期末教学质量检测试题含解析_第3页
丽江市重点中学2025届数学高一上期末教学质量检测试题含解析_第4页
丽江市重点中学2025届数学高一上期末教学质量检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

丽江市重点中学2025届数学高一上期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为三角形的内角,且,则()A. B.C. D.2.函数和都是减函数的区间是A. B.C. D.3.已知,,,则a,b,c的大小关系是A. B.C. D.4.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为()A. B.C. D.5.已知幂函数为偶函数,则实数的值为()A.3 B.2C.1 D.1或26.已知幂函数f(x)=xa的图象经过点P(2,),则函数y=f(x2)﹣2f(x)的最小值等于()A. B.C.1 D.﹣17.已知实数,,且,则的最小值为()A. B.C. D.8.已知全集,集合,或,则()A. B.或C. D.9.()A. B.3C.2 D.10.下列函数中,最小正周期为,且图象关于直线对称的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则函数的值域为______12.已知函数是定义在R上的奇函数,且,若对任意的,当时,都有成立,则不等式的解集为_____13.函数的最小值为_______14.___________,__________15.方程在上的解是______.16.“”是“”的______条件.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形生态种植园.设生态种植园的长为,宽为(1)若生态种植园面积为,则为何值时,可使所用篱笆总长最小?18.已知直线,点.(1)求过点且与平行的直线的方程;(2)求过点且与垂直的直线的方程.19.已知,,,.(1)求的值;(2)求的值.20.已知函数,直线是函数f(x)的图象的一条对称轴.(1)求函数f(x)的单调递增区间;(2)已知函数y=g(x)的图象是由y=f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移个单位长度得到的,若求的值.21.如图,四边形是矩形,平面,平面,,(1)证明:平面平面;(2)求三棱锥的体积

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据同角三角函数的基本关系,运用“弦化切”求解即可.【详解】计算得,所以,,从而可计算的,,,选项A正确,选项BCD错误.故选:A.2、A【解析】y=sinx是减函数的区间是,y=cosx是减函数的区间是[2k,2k+],,∴同时成立的区间为故选A.3、A【解析】根据对数函数的性质,确定的范围,即可得出结果.【详解】因为单调递增,所以,又,所以.故选A【点睛】本题主要考查对数的性质,熟记对数的性质,即可比较大小,属于基础题型.4、B【解析】根据题意,求得长方体的体对角线,即为该球的直径,再用球的表面积公式即可求得结果.【详解】由已知,该球是长方体的外接球,故,所以长方体的外接球半径,故外接球的表面积为.故选:.【点睛】本题考查长方体的外接球问题,涉及球表面积公式的使用,属综合基础题.5、C【解析】由题意利用幂函数的定义和性质,得出结论【详解】幂函数为偶函数,,且为偶数,则实数,故选:C6、D【解析】先由已知条件求得,再利用配方法求二次函数的最值即可得解.【详解】解:已知幂函数f(x)=xa的图象经过点P(2,),则,即,所以,所以,所以y=f(x2)﹣2f(x),当且仅当,即时取等号,即函数y=f(x2)﹣2f(x)的最小值等于,故选:D.【点睛】本题考查了幂函数解析式的求法,重点考查了二次函数求最值问题,属基础题.7、C【解析】由题可得,则由展开利用基本不等式可求.【详解】,,且,则,,当且仅当时,等号成立,故的最小值为.故选:C.8、D【解析】根据交集和补集的定义即可得出答案.【详解】解:因为,或,所以,所以.故选:D9、D【解析】利用换底公式计算可得答案【详解】故选:D10、B【解析】因为函数的最小正周期是,故先排除选项D;又对于选项C:,对于选项A:,故A、C均被排除,应选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,又,∴,∴故答案为12、;【解析】令,则为偶函数,且,当时,为减函数所以当时,;当时,;因此当时,;当时,,即不等式的解集为点睛:利用函数性质解抽象函数不等式,实质是利用对应函数单调性,而对应函数需要构造.13、【解析】根据正弦型函数的性质求的最小值.【详解】由正弦型函数的性质知:,∴的最小值为.故答案为:.14、①.##-0.5②.2【解析】根据诱导公式计算即可求出;根据对数运算性质可得【详解】由题意知,;故答案为:15、##【解析】根据三角函数值直接求角.【详解】由,得或,即或,又,故,故答案为.16、充分不必要【解析】解方程,即可判断出“”是“”的充分不必要条件关系.【详解】解方程,得或,因此,“”是“”的充分不必要条件.故答案为充分不必要.【点睛】本题考查充分不必要条件的判断,一般转化为集合的包含关系来判断,考查推理能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)为,为;(2).【解析】(1)根据题意,可得,篱笆总长为,利用基本不等式可求出的最小值,即可得出对应的值;(2)由题可知,再利用整体乘“1”法和基本不等式,求得,进而得出的最小值.【小问1详解】解:由已知可得,而篱笆总长为,又,则,当且仅当,即时等号成立,菜园的长为,宽为时,可使所用篱笆总长最小【小问2详解】解:由已知得,,又,,当且仅当,即时等号成立,的最小值是18、(1)(2)【解析】(1)由于直线与直线平行,所以直线的斜率与直线的斜率相等,所以利用点斜式可求出直线方程,(2)由于直线与直线垂直,所以直线的斜率与直线的斜率乘积等于,从而可求出直线的斜率,再利用点斜式可求出直线方程,【小问1详解】已知直线的斜率为,设直线的斜率为,∵与平行,∴,∴直线的方程为,即直线的方程为,【小问2详解】已知直线的斜率为,设直线的斜率为,∵与垂直,∴,∴,∴直线的方程为,即直线的方程为.19、(1);(2).【解析】(1)由已知利用同角三角函数基本关系式可求,的值,进而根据,利用两角差的余弦函数公式即可求解(2)利用二倍角公式可求,的值,进而即可代入求解【详解】(1)因为,所以又因为,所以所以(2)因为,所以所以【点睛】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想20、(1);(2)【解析】(1)首先化简函数,再根据是函数的一条对称轴,代入求,再求函数的单调递增区间;(2)先根据函数图象变换得到,并代入后,得,再利用角的变换求的值.【详解】(1),当时,,得,,,即,令,解得:,,函数的单调递增区间是;(2),,得,,,,【点睛】方法点睛:本题考查函数的图象变换,以及的性质,属于中档题型,的横坐标伸长(或缩短)到原来的倍,得到函数的解析式是,若向右(或左)平移()个单位,得到函数的解析式是或.21、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论