




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省江阴市暨阳中学2025届数学高一上期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆C与直线及都相切,圆心在直线上,则圆C的方程为()A. B.C. D.2.下列函数中定义域为,且在上单调递增的是A. B.C. D.3.若,则有()A.最大值 B.最小值C.最大值2 D.最小值24.函数与的图象可能是()A. B.C. D.5.已知集合,,,则A. B.C. D.6.第24届冬季奥林匹克运动会,将于2022年2月4日~2月20日在北京和张家口联合举行.为了更好地安排志愿者工作,现需要了解每个志愿者掌握的外语情况,已知志愿者小明只会德、法、日、英四门外语中的一门.甲说,小明不会法语,也不会日语:乙说,小明会英语或法语;丙说,小明会德语.已知三人中只有一人说对了,由此可推断小明掌握的外语是()A.德语 B.法语C.日语 D.英语7.函数在区间上的最小值为()A. B.C. D.8.若,则()A. B.C. D.9.农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从种植有甲、乙两种麦苗的两块试验田中各抽取6株麦苗测量株高,得到的数据如下(单位:cm):甲:9,10,11,12,10,20;乙:8,14,13,10,12,21.根据所抽取的甲、乙两种麦苗的株高数据,给出下面四个结论,其中正确的结论是()A.甲种麦苗样本株高的平均值大于乙种麦苗样本株高的平均值B.甲种麦苗样本株高的极差小于乙种麦苗样本株高的极差C.甲种麦苗样本株高的75%分位数为10D.甲种麦苗样本株高的中位数大于乙种麦苗样本株高的中位数10.下列直线中,倾斜角为45°的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则的值为__________12.已知函数,且函数恰有两个不同零点,则实数的取值范围是___________.13.已知函数对任意不相等的实数,,都有,则的取值范围为______.14.已知,且,则实数的取值范围为__________15.,,则的值为__________.16.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲、乙二人独立破译同一密码,甲破译密码的概率为0.7,乙破译密码的概率为0.6.记事件A:甲破译密码,事件B:乙破译密码.(1)求甲、乙二人都破译密码的概率;(2)求恰有一人破译密码的概率.18.已知函数,(,,)图象的一部分如图所示.(1)求函数的解析式;(2)当时,求的值域.19.要建造一段5000m的高速公路,工程队需要把600人分成两组,一组完成一段2000m的软土地带公路的建造任务,同时另一组完成剩下的3000m的硬土地带公路的建造任务.据测算,软、硬土地每米公路的工程量分别是50人/天和30人/天,设在软土地带工作的人数x人,在软土、硬土地带筑路的时间分别记为,(1)求,;(2)求全队的筑路工期;(3)如何安排两组人数,才能使全队筑路工期最短?20.已知函数的最小正周期为,再从下列两个条件中选择一个作为已知条件:条件①:的图象关于点对称;条件②:的图象关于直线对称(1)请写出你选择的条件,并求的解析式;(2)在(1)的条件下,当时,求的最大值和最小值,并指出相应的取值注;如果选择条件①和条件②分别解答,按第一个解答计分21.已知命题p:,q:,若p是q的必要不充分条件,求a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据圆心在直线上,设圆心坐标为,然后根据圆C与直线及都相切,由求解.【详解】因为圆心在直线上,设圆心坐标为,因为圆C与直线及都相切,所以,解得,∴圆心坐标为,又,∴,∴圆的方程为,故选:D.2、D【解析】先求解选项中各函数的定义域,再判定各函数的单调性,可得选项.【详解】因为的定义域为,的定义域为,所以排除选项B,C.因为在是减函数,所以排除选项A,故选D.【点睛】本题主要考查函数的性质,求解函数定义域时,熟记常见的类型:分式,偶次根式,对数式等,单调性一般结合初等函数的单调性进行判定,侧重考查数学抽象的核心素养.3、D【解析】构造基本不等式即可得结果.【详解】∵,∴,∴,当且仅当,即时,等号成立,即有最小值2.故选:D.【点睛】本题主要考查通过构造基本不等式求最值,属于基础题.4、D【解析】注意到两函数图象与x轴的交点,由排除法可得.【详解】令,得或,则函数过原点,排除A;令,得,故函数,都过点,排除BC.故选:D5、D【解析】本题选择D选项.6、B【解析】根据题意,分“甲说对,乙、丙说错”、“乙说对,甲、丙说错”、“丙说对,甲、乙说错”三种情况进行分析,即可得到结果.【详解】若甲说对,乙、丙说错:甲说对,小明不会法语也不会日语;乙说错,则小明不会英语也不会法语;丙说错,则小明不会德语,由此可知,小明四门外语都不会,不符合题意;若乙说对,甲、丙说错:乙说对,则小明会英活或法语;甲说错,则小明会法语或日语;丙说错,小明不会德语;则小明会法语;若丙说对,甲、乙说错:丙说对,则小明会德语;甲说错,到小明会法语或日语;乙说错,则小明不会英语也不会法语;则小明会德语或日语,不符合题意;综上,小明会法语.故选:B.7、C【解析】求出函数的对称轴,判断函数在区间上的单调性,根据单调性即可求解.【详解】,对称轴,开口向上,所以函数在上单调递减,在单调递增,所以.故选:C8、A【解析】令,则,所以,由诱导公式可得结果.【详解】令,则,且,所以.故选:A.9、B【解析】对A,由平均数求法直接判断即可;由极差概念可判断B,结合百分位数概念可求C;将甲乙两组数据排序,可判断D.【详解】甲组数据的平均数为9+10+11+12+10+206=12,乙组数据的平均数为8+14+13+10+12+216甲种麦苗样本株高的极差为11,乙种麦苗样本株高的极差为13,故B正确;6×0.75=4.5,故甲种麦苗样本株高的75%分位数为第5位数,为12,故C错误;甲种麦苗样本株高的中位数为10.5,乙种麦苗样本株高的中位数为12.5,故D错误.故选:B10、C【解析】由直线倾斜角得出直线斜率,再由直线方程求出直线斜率,即可求解.【详解】由直线的倾斜角为45°,可知直线的斜率为,对于A,直线斜率为,对于B,直线无斜率,对于C,直线斜率,对于D,直线斜率,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据两角和的正弦公式即可求解.【详解】由题意可知,因为,所以,所以,则故答案为:.12、【解析】作出函数的图象,把函数的零点转化为直线与函数图象交点问题解决.【详解】由得,即函数零点是直线与函数图象交点横坐标,当时,是增函数,函数值从1递增到2(1不能取),当时,是增函数,函数值为一切实数,在坐标平面内作出函数的图象,如图,观察图象知,当时,直线与函数图象有2个交点,即函数有2个零点,所以实数的取值范围是:.故答案为:13、【解析】首先根据题意得到在上为减函数,从而得到,再解不等式组即可.【详解】由题知:对任意不相等的实数,,都有,所以在上为减函数,故,解得:.故答案为:【点睛】本题主要考查分段函数的单调性,同时考查了对数函数的单调性,属于简单题.14、【解析】,该函数的定义域为,又,故为上的奇函数,所以等价于,又为上的单调减函数,,也即是,解得,填点睛:解函数不等式时,要注意挖掘函数的奇偶性和单调性15、#0.3【解析】利用“1”的代换,构造齐次式方程,再代入求解.【详解】,故答案为:16、3【解析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取人数为【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.42;(2)0.46.【解析】(1)由相互独立事件概率的乘法公式运算即可得解;(2)由互斥事件概率的加法公式及相互独立事件概率的乘法公式运算即可得解.【详解】(1)事件“甲、乙二人都破译密码”可表示为AB,事件A,B相互独立,由题意可知,所以;(2)事件“恰有一人破译密码”可表示为,且,互斥所以.18、(1),(2)【解析】(1)根据函数的最大值得到,根据周期得到,根据得到,从而得到.(2)首先根据题意得到,再根据,利用正弦函数图象性质求解值域即可.【详解】(1)因为,,所以.又因为,所以,即,.因为,,,所以,又因为,所以,.(2).因为,所以,所以,即,故函数的值域为.19、(1),,,(2),且(3)安排316人到软土地带工作,284人到硬土地带工作时,可以使全队筑路工期最短【解析】(1)由题意分别计算在软土、硬土地带筑路的时间即可;(2)由得到零点,即可得到分段函数;(3)利用函数的单调性即可得到结果.【小问1详解】在软土地带筑路时间为:,在硬土地带筑路时间为,,【小问2详解】全队的筑路工期为由于,即,得从而,即,且.【小问3详解】函数区间上递减,在区间上递增,所以是函数的最小值点但不是整数,于是计算和,其中较小者即为所求于是安排316人到软土地带工作,284人到硬土地带工作时,可以使全队筑路工期最短20、(1);(2)时,有最小值,时,有最大值2.【解析】(1)若选①,根据周期求出,然后由并结合的范围求出,最后求出答案;若选②,根据周期求出,然后由并结合的范围求出,最后求出答案;(2)结合(1),先求出的范围,然后结合正弦函数的性质求出答案.【小问1详解】若选①,由题意,,因为函数的图象关于点对称,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 从生产到消费探讨如何利用区块链优化商品供应链流程
- 医疗器械设计的发展趋势与材料应用
- 医疗设备安全与质量控制
- 医疗大数据的采集、存储与隐私保护技术探讨
- 医药企业药品说明书合规经营策略
- 医疗信息化趋势下的电子健康记录标准化探索
- 医院信息化建设中的多部门协同策略
- 公交卡制作合同范例
- 供销合同范例格式
- 医疗大数据下的患者隐私保护策略研究
- 《基于SLP的丹尼斯卖场仓储布局优化设计案例报告》12000字(论文)
- 班组长的选聘、使用、淘汰制度模版(2篇)
- 量子信息技术国内外标准化进展报告(2024)-量子科技产学研创新联盟
- 2025合法的有限公司劳动合同范本
- 医院预防职务犯罪讲座
- 2025届山东省师大附中高考数学一模试卷含解析
- 房产出租授权委托书
- 音乐引导的运动节奏
- 产后腰痛的健康宣教
- 起重工的安全技术操作规程(4篇)
- 可再生能源技术发展与应用考核试卷
评论
0/150
提交评论