




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省福州市第十一中学数学高一上期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的部分图象如图所示,则的解析式为()A. B.C. D.2.毛主席的诗句“坐地日行八万里”描写的是赤道上的人即使坐在地上不动,也会因为地球自转而每天行八万里路程.已知我国四个南极科考站之一的昆仑站距离地球南极点约1050km,把南极附近的地球表面看作平面,则地球每自转πA.2200km B.C.1100km D.3.函数的大致图像是()A. B.C. D.4.定义在上的奇函数,在上单调递增,且,则满足的的取值范围是()A. B.C. D.5.若函数的定义域是,则函数值域为()A. B.C. D.6.已知,,则下列不等式中恒成立的是()A. B.C. D.7.已知函数在[2,3]上单调递减,则实数a的取值范围是()A. B.C. D.8.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积可能等于A. B.C. D.29.已知命题,,则为()A., B.,C., D.,10.若,,,则的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,矩形中,,,与交于点,过点作,垂足为,则______.12.若函数在区间上有两个不同的零点,则实数a的取值范围是_________.13.函数的零点为______14.已知非零向量、满足,,在方向上的投影为,则_______.15.直三棱柱ABC-A1B1C1,内接于球O,且AB⊥BC,AB=3.BC=4.AA1=4,则球O的表面积______16.若函数f(x)=的定义域为R,则实数a的取值范围是:_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点与坐标原点重合,始边与x轴非负半轴重合,终边过点(1)求值(2)已知,求的值18.函数的定义域为D,若存在正实数k,对任意的,总有,则称函数具有性质.(1)判断下列函数是否具有性质,并说明理由.①;②;(2)已知为二次函数,若存在正实数k,使得函数具有性质.求证:是偶函数;(3)已知为给定的正实数,若函数具有性质,求的取值范围.19.设,且.(1)求的值;(2)求在区间上的最大值.20.已知点,,动点P满足若点P为曲线C,求此曲线的方程;已知直线l在两坐标轴上的截距相等,且与中的曲线C只有一个公共点,求直线l的方程21.已知关于的函数.(1)若函数是偶函数,求实数的值;(2)当时,对任意,记的最小值为,的最大值为,且,求实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据图像得到,,计算排除得到答案.【详解】根据图像知选项:,排除;D选项:,排除;根据图像知选项:,排除;故选:【点睛】本题考查了三角函数图像的识别,计算特殊值可以快速排除选项,是解题的关键.2、C【解析】利用弧长公式求解.【详解】因为昆仑站距离地球南极点约1050km,地球每自转π所以由弧长公式得:l=1050×π故选:C3、D【解析】由题可得定义域为,排除A,C;又由在上单增,所以选D.4、B【解析】由题意可得,,在递增,分别讨论,,,,,结合的单调性,可得的范围【详解】函数是定义在上的奇函数,在区间上单调递增,且(1),可得,,在递增,若时,成立;若,则成立;若,即,可得(1),即有,可得;若,则,,可得,解得;若,则,,可得,解得综上可得,的取值范围是,,故选:B5、A【解析】根据的单调性求得正确答案.【详解】根据复合函数单调性同增异减可知在上递增,,即.故选:A6、D【解析】直接利用特殊值检验及其不等式的性质判断即可.【详解】对于选项A,令,,但,则A错误;对于选项B,令,,但,则B错误;对于选项C,当时,,则C错误;对于选项D,有不等式的可加性得,则D正确,故选:D.7、C【解析】根据复合函数的单调性法则“同增异减”求解即可.【详解】由于函数在上单调递减,在定义域内是增函数,所以根据复合函数的单调性法则“同增异减”得:在上单调递减,且,所以且,解得:.故的取值范围是故选:C.8、C【解析】如果主视图是从垂直于正方体的面看过去,则其面积为1;如果斜对着正方体的某表面看,其面积就变大,最大时,(是正对着正方体某竖着的棱看),面积为以上表面的对角线为长,以棱长为宽的长方形,其面积为,可得主视图面积最小是1,最大是,故选C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.9、A【解析】特称命题的否定为全称命题,所以,存在性量词改为全称量词,结论直接改否定即可.【详解】命题,,则:,答案选A【点睛】本题考查命题的否定,属于简单题.10、A【解析】由指数函数的单调性可知,由对数函数的单调性可知,化简,进而比较大小即可【详解】因为在上是增函数,所以;在上是增函数,所以;,所以,故选:A【点睛】本题考查指数、对数比较大小问题,考查指数函数、对数函数的单调性的应用二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求得,然后利用向量运算求得【详解】,,所以,.故答案为:12、【解析】首先根据函数的解析式确定,再利用换元法将函数在区间上有两个不同的零点的问题,转化为方程区间上有两个不同根的问题,由此列出不等式组解得答案.【详解】函数在区间上有两个不同的零点,则,故由可知:,当时,,显然不符合题意,故,又函数在区间上有两个不同的零点,等价于在区间上有两个不同的根,设,则函数在区间上有两个不同的根,等价于在区间上有两个不同的根,由得,要使区间上有两个不同的根,需满足a2-5a+1>06a故答案为:13、1和【解析】由,解得的值,即可得结果【详解】因为,若,则,即,整理得:可解得:或,即函数的零点为1和,故答案为1和.【点睛】本题主要考查函数零点的计算,意在考查对基础知识的理解与应用,属于基础题14、【解析】利用向量数量积的几何意义得出,在等式两边平方可求出的值,然后利用平面向量数量积的运算律可计算出的值.【详解】,在方向上的投影为,,,则,可得,因此,.故答案:.【点睛】本题考查平面向量数量积计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题.15、【解析】利用三线垂直联想长方体,而长方体外接球直径为其体对角线长,容易得到球半径,得解【详解】直三棱柱中,易知AB,BC,BB1两两垂直,可知其为长方体的一部分,利用长方体外接球直径为其体对角线长,可知其直径为,∴=41π,故答案为41π【点睛】本题主要考查了三棱柱的外接球和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和空间想象能力.16、【解析】根据题意,有在R上恒成立,则,即可得解.【详解】若函数f(x)=的定义域为R,则在R上恒成立,则,解得:,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)依题意,将原式利用诱导公式化简,分子分母同除,代入正切计算可求出结果.(2)由终边所过点以及二倍角公式可计算和的三角函数值,利用平方和为1求出,代入两角和的余弦可计算的值.【小问1详解】依题意,原式【小问2详解】因为是第一象限角,且终边过点,所以,,所以,,因为,且,所以,所以18、(1)具有性质;不具有性质;(2)见解析;(3)【解析】(1)根据定义即可求得具有性质;根据特殊值即可判断不具有性质;(2)利用反证法,假设二次函数不是偶函数,根据题意推出与题设矛盾即可证明;(3)根据题意得到,再根据具有性质,得到,解不等式即可.【详解】解:(1),定义域为,则有,显然存在正实数,对任意的,总有,故具有性质;,定义域为,则,当时,,故不具有性质;(2)假设二次函数不是偶函数,设,其定义域为,即,则,易知,是无界函数,故不存在正实数k,使得函数具有性质,与题设矛盾,故是偶函数;(3)的定义域为,,具有性质,即存在正实数k,对任意的,总有,即,即,即,即,即,即,通过对比解得:,即.【点睛】方法点睛:应用反证法时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.所谓矛盾主要指:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与公认的简单事实矛盾;⑤自相矛盾.19、(1);(2)2【解析】(1)直接由求得的值;(2)由对数的真数大于0求得的定义域,判定在上的增减性,求出在上的最值,即得值域【详解】解:(1)∵,∴,∴;(2)由得,∴函数的定义域为,,∴当时,是增函数;当时,是减函数,∴函数在上的最大值是【点睛】本题考查了求函数的定义域和值域的问题,利用对数函数的真数大于0可求得定义域,利用函数的单调性可求得值域20、(1)(2)或【解析】设,由动点P满足,列出方程,即可求出曲线C的方程设直线l在坐标轴上的截距为a,当时,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程与圆的方程联立方程组,根据由直线l与曲线C只有一个公共点,即可求出直线l的方程【详解】设,点,,动点P满足,整理得:,曲线C方程为设直线l的横截距为a,则直线l的纵截距也为a,当时,直线l过,设直线方程为把代入曲线C的方程,得:,,直线l与曲线C有两个公共点,已知矛盾;当时,直线方程为,把代入曲线C的方程,得:,直线l与曲线C只有一个公共点,,解得,直线l的方程为或【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家庭财产保值增值与责任履行合同
- 网络电子合同法律效力认定与保证书
- 电商平台会员日活动策划与执行服务协议
- 国际会议展览设备技术保障与售后服务协议
- 网络直播平台用户数据授权与商业合作合同
- 快递网点区域代理合作协议书
- 保险理赔案件评估与处理合同
- 海外矿产样品研磨耗材租赁及全球市场动态监控合同
- 工业模具技术升级改造质量标准执行与监督协议
- 《中国卫生政策研究》投稿指南
- Unit6Section+A+3a-3c课件人教版八年级英语下册
- 外科学(2)智慧树知到答案章节测试2023年温州医科大学
- 99S203消防水泵接合器安装
- 回复订单确认函英文(22篇)
- 交房通知短信(5篇)
- 高中英语 A precious family dinner说课课件
- 鼻部疾病 慢性鼻窦炎的诊疗
- 2013-2022全国高考真题物理汇编:练习使用多用电表
- 《绿色建筑概论》整套教学课件
- 常用急救药品的剂量与用法课件
- 自动控制原理-复习题及答案
评论
0/150
提交评论