版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省朝阳市凌源市联合校高二上数学期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则这个圆锥的体积为()A. B.C. D.2.已知是双曲线的左、右焦点,点P在C上,,则等于()A.2 B.4C.6 D.83.在等差数列中,,则()A.6 B.3C.2 D.14.抛物线有如下光学性质:平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于y轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则经点B反射后的反射光线必过点()A. B.C. D.5.直线的倾斜角,则其斜率的取值范围为()A. B.C. D.6.若抛物线的焦点与椭圆的左焦点重合,则m的值为()A.4 B.-4C.2 D.-27.已知,则方程与在同一坐标系内对应的图形编号可能是()A.①④ B.②③C.①② D.③④8.已知抛物线上一点M与焦点间的距离是3,则点M的纵坐标为()A.1 B.2C.3 D.49.已知双曲线的虚轴长是实轴长的2倍,则实数的值是A. B.C. D.10.“”是“方程表示双曲线”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.函数的导数为()A.B.CD.12.已知抛物线过点,点为平面直角坐标系平面内一点,若线段的垂直平分线过抛物线的焦点,则点与原点间的距离的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程为________14.若满足约束条件,则的最大值为_________.15.不等式的解集是_______________16.如果椭圆上一点P到焦点的距离等于6,则点P到另一个焦点的距离为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆,P(2,0),M点是圆Q上任意一点,线段PM的垂直平分线交半径MQ于点C,当M点在圆上运动时,点C的轨迹为曲线C(1)求曲线C方程;(2)已知直线l:x=8,A、B是曲线C上的两点,且不在x轴上,,垂足为,,垂足为,若D(3,0),且的面积是△ABD面积的5倍,求△ABD面积的最大值18.(12分)已知函数在区间上有最大值和最小值(1)求实数、的值;(2)设,若不等式,在上恒成立,求实数的取值范围19.(12分)设关于x的不等式的解集为A,关于x的不等式的解集为B(1)求集合A,B;(2)若是的必要不充分条件,求实数m的取值范围20.(12分)已知圆C的圆心在直线上,且过点.(1)求圆C的方程;(2)若圆C与直线交于A,B两点,且,求m的值.21.(12分)已知点P到点的距离比它到直线的距离小1.(1)求点P的轨迹方程;(2)点M,N在点P的轨迹上且位于x轴的两侧,(其中O为坐标原点),求面积的最小值.22.(10分)奋发学习小组共有3名学生,在某次探究活动中,他们每人上交了1份作业,现各自从这3份作业中随机地取出了一份作业.(1)每个学生恰好取到自己作业的概率是多少?(2)每个学生不都取到自己作业的概率是多少?(3)每个学生取到的都不是自己作业的概率是多少?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设圆锥的半径为,母线长,根据已知条件求出、的值,可求得该圆锥的高,利用锥体的体积公式可求得结果.【详解】设圆锥的半径为,母线长,因为侧面展开图是一个半圆,则,即,又圆锥的表面积为,则,解得,,则圆锥的高,所以圆锥的体积,故选:D.2、D【解析】根据双曲线定义写出,两边平方代入焦点三角形的余弦定理中即可求解【详解】双曲线,,所以,根据双曲线的对称性,可假设在第一象限,设,则,所以,,在中,根据余弦定理:,即,解得:,所以故选:D3、B【解析】根据等差数列下标性质进行求解即可.【详解】因为是等差数列,所以,故选:B4、D【解析】求出、坐标可得直线的方程,与抛物线方程联立求出,根据选项可得答案,【详解】把代入得,所以,所以直线的方程为即,与抛物线方程联立解得,所以,因为反射光线平行于y轴,根据选项可得D正确,故选:D5、B【解析】根据倾斜角和斜率的关系,确定正确选项.【详解】直线的倾斜角为,则斜率为,在上为增函数.由于直线的倾斜角,所以其斜率的取值范围为,即.故选:B【点睛】本小题主要考查倾斜角和斜率的关系,属于基础题.6、B【解析】根据抛物线和椭圆焦点与其各自标准方程的关系即可求解.【详解】由题可知抛物线焦点为,椭圆左焦点为,∴.故选:B.7、B【解析】结合椭圆、双曲线、抛物线的图像,分别对①②③④分析m、n的正负,即可得到答案.【详解】对于①:由双曲线的图像可知:;由抛物线的图像可知:同号,矛盾.故①错误;对于②:由双曲线的图像可知:;由抛物线的图像可知:异号,符合要求.故②成立;对于③:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,符合要求.故③成立;对于④:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,矛盾.故④错误;故选:B8、B【解析】利用抛物线的定义求解即可【详解】抛物线的焦点为,准线方程为,因为抛物线上一点M与焦点间的距离是3,所以,得,即点M的纵坐标为2,故选:B9、C【解析】由方程表示双曲线知,又双曲线的虚轴长是实轴长的2倍,所以,即,所以故选C.考点:双曲线的标准方程与简单几何性质.10、A【解析】方程表示双曲线则,解得,是“方程表示双曲线”的充分不必要条件.故选:A11、B【解析】由导数运算法则可求出.【详解】,.故选:B.12、B【解析】将点的坐标代入抛物线的方程,求出的值,可求得抛物线的方程,求出的坐标,分析可知点的轨迹是以点为圆心,半径为的圆,利用圆的几何性质可求得点与原点间的距离的最小值.【详解】将点的坐标代入抛物线的方程得,可得,故抛物线的方程为,易知点,由中垂线的性质可得,则点的轨迹是以点为圆心,半径为的圆,故点的轨迹方程为,如下图所示:由图可知,当点、、三点共线且在线段上时,取最小值,且.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、4x+3y-6=0【解析】直接求出两直线l1:x﹣2y+4=0和l2:x+y﹣2=0的交点P的坐标,求出直线的斜率,然后求出所求直线方程【详解】由方程组可得P(0,2)∵l⊥l3,∴kl=﹣,∴直线l的方程为y﹣2=﹣x,即4x+3y-6=0故答案为:4x+3y-6=014、7【解析】画出约束条件所表示的平面区域,结合图象和直线在轴上的截距,确定目标函数的最优解,代入即可求解.【详解】画出不等式组所表示的平面区域,如图所示,目标函数可化为,当直线过点点时,此时直线在轴上的截距最大,此时目标函数取得最大值,又由,解得,即,所以目标函数的最大值为.故答案为:.15、或【解析】将分式不等式,转化为一元二次不等式求解【详解】因为,所以,解得或.故答案为:或【点睛】本题主要考查分式不等式的解法,还考查了运算求解的能力,属于基础题.16、14【解析】根据椭圆的定义及椭圆上一点P到焦点的距离等于6,可得的长.【详解】解:根据椭圆的定义,又椭圆上一点P到焦点的距离等于6,,故,故答案:.【点睛】本题主要考查椭圆的定义及简单性质,相对简单.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由定义法求出曲线C的方程;(2)先判断出直线AB过定点H(2,0)或H(4,0).当AB过定点H(4,0),求出最大;当H(2,0)时,可设直线AB:.用“设而不求法”表示出,不妨设(),利用函数的单调性求出△ABD面积的最大值.【小问1详解】因为线段PM的垂直平分线交半径MQ于点C,所以,所以,符合椭圆的定义,所以点C的轨迹为以P、Q为焦点的椭圆,其中,所以,所以曲线C的方程为.【小问2详解】不妨设直线l:x=8交x轴于G(8,0),直线AB交x轴于H(h,0),则,.因为,,,所以.又因为的面积是△ABD面积的5倍,所以.因为G(8,0),D(3,0),所以,所以H(2,0)或H(4,0).当H(4,0)时,则H与A(或H与B)重合,不妨设H与A重合,此时,,要使△ABD面积最大,只需B在短轴顶点时,=2最大,所以最大;当H(2,0)时,要想构成三角形ABD,直线AB的斜率不为0,可设直线AB:.设,则,消去x可得:,所以,,,所以.不妨设(),则,由对勾函数的性质可知,在上单调递减,所以当t=4时,,此时最大综上所述,△ABD面积的最大值为.【点睛】(1)“设而不求”是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题;(2)解析几何中最值计算方法有两类:①几何法:利用几何图形求最值;②代数法:表示为函数,利用函数求最值.18、(1),;(2).【解析】(1)分析函数在区间上的单调性,结合已知条件可得出关于实数、的方程组,即可解得实数、的值;(2)由(1)可得,利用参变量分离法可得出,利用单调性求出函数在上的最小值,即可得出实数的取值范围.【小问1详解】解:的对称轴是,又,所以,函数在上单调递减,在上单调递增,当时,取最小值,当时,取最大值,即,解得.【小问2详解】解:由(1)知:,所以,,又,,令,则在上是增函数.所以,,要使在上恒成立,只需,因此,实数的取值范围为19、(1),(2)【解析】(1)直接解不等式即可,(2)由题意可得,从而可得解不等式组可求得答案【小问1详解】由,得,故由,得,故【小问2详解】依题意得:,∴解得∴m的取值范围为20、(1)(2)或【解析】(1)由已知设圆C的方程为,点代入计算即可得出结果.(2)由已知可得圆心C到直线的距离,利用点到直线的距离公式计算即可求得值.【小问1详解】设圆心坐标为,半径为,圆C的圆心在直线上,.则圆C的方程为,圆C过点,则,解得:则,圆C的圆心坐标为.则圆C的方程为;【小问2详解】圆心C到直线的距离.则,解得或21、(1);(2).【解析】(1)根据给定条件可得点P到点的距离等于它到直线的距离,再由抛物线定义即可得解.(2)由(1)设出点M,N的坐标,再结合给定条件及三角形面积定理列式,借助均值不等式计算作答.【小问1详解】因点P到点的距离比它到直线的距离小1,显然点P与F在直线l同侧,于是得点P到点的距离等于它到直线的距离,则点P的轨迹是以F为焦点,直线为准线的抛物线,所以点P的轨迹方程是.【小问2详解】由(1)设点,,且,因,则,解得,S,当且仅当,即时取“=”,所以面积的最小值为.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.22、(1)(2)(3)【解析】(1)根据列举法列出所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025茶叶采购合同协议范本
- 2025企业终止劳动合同的合同书范本
- 2025年上海市存量房的买卖合同
- 2025年短视频内容创作协议(原创)
- 2025年新疆土地使用权转让合同示例
- 2025劳动合同书范本模板
- 离婚协议书变更房屋
- 病人护理协议书
- 合作协议书续约
- 租车押金协议合同范本
- 采购工程师转正述职报告
- 近视的成因和预防
- DB12T 1118-2021 地面沉降监测分层标施工技术规程
- 齐鲁名家 谈方论药知到智慧树章节测试课后答案2024年秋山东中医药大学
- 【MOOC】油气地质与勘探-中国石油大学(华东) 中国大学慕课MOOC答案
- 《晶体的缺陷》课件
- 人教版八年级上册数学期中复习课件
- 2024年全国营养师技能大赛备赛试题库(含答案)
- 2024光伏电站质量验收项目划分表(分部分项)
- JT-T 1409-2022 城市轨道交通运营应急能力建设基本要求
- 2024-2030全球及中国环戊烷行业市场发展分析及前景趋势与投资发展研究报告
评论
0/150
提交评论