




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
德州市重点中学2025届高一数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若方程在区间内有两个不同的解,则A. B.C. D.2.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D.23.已知,则的最小值为()A. B.2C. D.44.设,则“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.已知等腰直角三角形的直角边的长为4,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A. B.C. D.6.下列函数中,既是偶函数,又在区间上单调递增的是()A. B.C. D.7.()A.1 B.C. D.8.在中,,则等于A. B.C. D.9.已知a>b,则下列式子中一定成立的是()A. B.|a|>|b|C. D.10.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.我国古代数学名著《续古摘奇算法》(杨辉著)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等(如图所示),我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是__________.83415967212.已知,则_______.13.已知函数,给出下列四个命题:①函数是周期函数;②函数的图象关于点成中心对称;③函数的图象关于直线成轴对称;④函数在区间上单调递增.其中,所有正确命题的序号是___________.14.定义在上的奇函数满足:对于任意有,若,则的值为__________.15.定义在R上的奇函数f(x)周期为2,则__________.16.已知水平放置的按“斜二测画法”得到如图所示的直观图,其中,,则原的面积为___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆:关于直线:对称的图形为圆.(1)求圆的方程;(2)直线:,与圆交于,两点,若(为坐标原点)的面积为,求直线的方程.18.已知函数(,且).(1)若,试比较与的大小,并说明理由;(2)若,且,,三点在函数的图像上,记的面积为,求的表达式,并求的值域.19.(1)求函数的解析式;(2)试判断函数在区间上的单调性,并用函数单调性定义证明;(3)当时,函数恒成立,求实数m的取值范围20.某兴趣小组要测量钟楼的高度(单位:).如示意图,垂直放置的标杆的高度为,仰角.(1)该小组已测得一组的值,算出了,请据此算出的值(精确到);(2)该小组分析测得的数据后,认为适当调整标杆到钟楼的距离(单位:),使与之差较大,可以提高测量精度.若钟楼的实际高度为,试问为多少时,最大?21.已知为第三象限角,且.(1)化简;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由,得,所以函数的图象在区间内的对称轴为故当方程在区间内有两个不同的解时,则有选C2、B【解析】首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.3、C【解析】根据给定条件利用均值不等式直接计算作答.【详解】因为,则,当且仅当,即时取“=”,所以的最小值为.故选:C4、D【解析】若,则,故不充分;若,则,而,故不必要,故选D.考点:本小题主要考查不等式的性质,熟练不等式的性质是解答好本类题目的关键.5、D【解析】如图为等腰直角三角形旋转而成的旋转体这是两个底面半径为,母线长4的圆锥,故S=2πrl=2π××4=故答案为D.6、D【解析】根据题意,依次判断选项中函数的奇偶性、单调性,从而得到正确选项.【详解】根据题意,依次判断选项:对于A,,是非奇非偶函数,不符合题意;对于B,,是余弦函数,是偶函数,在区间上不是单调函数,不符合题意;对于C,,是奇函数,不是偶函数,不符合题意;对于D,,是二次函数,其开口向下对称轴为y轴,既是偶函数又在上单调递增,故选:D.7、A【解析】直接利用诱导公式和两角和的正弦公式求出结果【详解】,故选:8、C【解析】分析:利用两角和的正切公式,求出的三角函数值,求出的大小,然后求出的值即可详解:由,则,因为位三角形的内角,所以,所以,故选C点睛:本题主要考查了两角和的正切函数的应用,解答中注意公式的灵活运用以及三角形内角定理的应用,着重考查了推理与计算能力9、D【解析】利用特殊值法以及的单调性即可判断选项的正误.【详解】对于A,若则,故错误;对于B,若则,故错误;对于C,若则,故错误;对于D,由在上单调增,即,故正确.故选:D10、C【解析】对于A、B、D均可能出现,而对于C是正确的二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】三阶幻方,是最简单的幻方,由1,2,3,4,5,6,7,8,9.其中有8种排法492、357、816;276、951、438;294、753、618;438、951、276;816、357、492;618、753、294;672、159、834;834、159、672故答案为:812、【解析】直接利用二倍角的余弦公式求得cos2a的值【详解】∵.故答案为:13、①②③【解析】利用诱导公式化简函数,借助周期函数的定义判断①;利用函数图象对称的意义判断②③;取特值判断④作答.【详解】依题意,,因,是周期函数,是它的一个周期,①正确;因,,即,因此的图象关于点成对称中心,②正确;因,,即,因此的图象关于直线成轴对称,③正确;因,,,显然有,而,因此函数在区间上不单调递增,④不正确,所以,所有正确命题的序号是①②③.故答案为:①②③【点睛】结论点睛:函数的定义域为D,,(1)存在常数a,b使得,则函数图象关于点对称.(2)存在常数a使得,则函数图象关于直线对称.14、【解析】由可得,则可化简,利用可得,由是在上的奇函数可得,由此【详解】由题,因为,所以,由,则,则,因为,令,则,所以,因为是在上的奇函数,所以,所以,故答案:0【点睛】本题考查函数奇偶性、周期性的应用,考查由正切值求正、余弦值15、0【解析】以周期函数和奇函数的性质去求解即可.【详解】因为是R上的奇函数,所以,又周期为2,所以,又,所以,故,则对任意,故故答案为:016、2【解析】∵∠B'A'C'=90°,B'O'=C'O'=1,.∴A'O'=1,∴原△ABC的高为2,△ABC面积为.点睛:由斜二测画法知,设直观图的面积为,原图形面积为,则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)设圆圆心为,则由题意得,求出的值,从而可得所求圆的方程;(2)设圆心到直线:的距离为,原点到直线:的距离为,则有,,再由的面积为,列方程可求出的值,进而可得直线方程【详解】解:(1)设圆的圆心为,由题意可得,则的中点坐标为,因为圆:关于直线:对称的图形为圆,所以,解得,因为圆和圆的半径相同,即,所以圆的方程为,(2)设圆心到直线:的距离为,原点到直线:的距离为,则,,所以所以,解得,因为,所以,所以直线的方程为【点睛】关键点点睛:此题考查圆的方程的求法,考查直线与圆的位置关系,解题的关键是利用点到直线的距离公式表示出圆心到直线的距离为,原点到直线的距离为,再表示出,从而由的面积为,得,进而可求出的值,问题得到解决,考查计算能力,属于中档题18、(1)当时,;当时,;(2);【解析】(1)根据题意分别代入求出,再比较的大小,利用函数的单调性即可求解.(2)先表示出的表达式,再根据函数的单调性求的值域.【详解】解:(1)当时,在上单调递减;,,又,,故;同理可得:当时,在上单调递增;,,又,,故,综上所述:当时,;当时,;(2)由题意可知:,,,故在上单调递增;令,,当时,在上单调递增;故在上单调递减;故在上单调递减;故,故的值域为:.19、(1);(2)单调递减;(3)【解析】(1)函数为奇函数,则,再用待定系数法即可求出;(2)作差法:任意的两个实数,证明出;(3)要使则试题解析:(1)所以(2)由(1)问可得在区间上是单调递减的证明:设任意的两个实数又,,在区间上是单调递减的;(3)由(2)知在区间上的最小值是要使则考点:1、待定系数法;2、函数的单调性;3、不等式恒成立问题.20、(1)约为(2)为时,最大【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沟通与反馈机制的年度优化计划
- 文史哲社团研究与探讨活动计划
- 市场趋势与应对策略计划
- 如何制定可行的短期和长期财务计划
- 平行四边形的面积教学设计
- 如何提升办公环境的舒适度计划
- 人教版小学数学二年级下册《找规律》教学设计
- 延津县2025年数学五年级第二学期期末质量检测试题含答案
- 班级文化建设的创新实践计划
- 2025年长春货运从业资格证考试模拟考试
- 整本书阅读《林海雪原》【知识精研】六年级语文下册 (统编版五四制2024)
- 9《我的战友邱少云》说课稿-2024-2025学年六年级语文上册统编版
- 亚朵酒店前台培训
- 大学假期安全主题班会课件
- 创业培训讲师手册
- 威胁情报评估体系-洞察分析
- 2024 CSCO 黑色素瘤指南解读
- 弘扬航天精神拥抱星辰大海!课件高一上学期载人航天主题班会
- 中国类风湿关节炎诊疗指南(2024版)解读
- 小学六年级科学(人教版)《各种各样的自然资源》-教学设计、课后练习、学习任务单
- 幼儿园小班健康《打针吃药我不怕》课件
评论
0/150
提交评论