




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市重点中学2025届高一数学第一学期期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的值为()A. B.C.或 D.2.已知,则,,的大小关系为()A. B.C. D.3.已知函数=的图象恒过定点,则点的坐标是A.(1,5) B.(1,4)C.(0,4) D.(4,0)4.在中,“”是“”的()A.充要条件 B.充分非必要条件C必要非充分条件 D.既非充分又非必要条件5.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为14人,则样本中的中年职工人数为()A.10 B.30C.50 D.706.函数f(x)=ln(2x)-1的零点位于区间()A.(2,3) B.(3,4)C.(0,1) D.(1,2)7.函数的图象大致为()A. B.C. D.8.已知集合A={x|-1≤x≤2},B={0,1,2,3},则A∩B=()A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}9.已知函数的部分图象如图所示,则的解析式为()A. B.C. D.10.已知函数,若,则x的值是()A.3 B.9C.或1 D.或3二、填空题:本大题共6小题,每小题5分,共30分。11.函数的部分图像如图所示,轴,则_________,_________12.若函数在[-1,2]上的最大值为4,最小值为m,且函数在上是增函数,则a=______.13.若函数y=f(x)是函数y=2x的反函数,则f(2)=______.14.已知且,函数的图像恒过定点,若在幂函数的图像上,则__________15.有一批材料可以建成360m长的图墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形如图所示,则围成场地的最大面积为______围墙厚度不计16.当一个非空数集G满足“如果,则,,,且时,”时,我们称G就是一个数域,以下关于数域的命题:①0和1都是任何数域的元素;②若数域G有非零元素,则;③任何一个有限数域的元素个数必为奇数;④有理数集是一个数域;⑤偶数集是一个数域,其中正确的命题有______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.冰雪装备器材产业是冰雪产业的重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?18.计算求值:(1)计算:;(2).19.已知函数,.(1)求方程的解集;(2)定义:.已知定义在上的函数,求函数的解析式;(3)在(2)的条件下,在平面直角坐标系中,画出函数的简图,并根据图象写出函数的单调区间和最小值.20.已知函数(1)求函数的单调递增区间;(2)若,求函数的取值范围21.已知函数()用五点法作出在一个周期上的简图.(按答题卡上所给位置作答)()求在时的值域
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】分别令和,根据集合中元素的互异性可确定结果.【详解】若,则,不符合集合元素的互异性;若,则或(舍),此时,符合题意;综上所述:.故选:A.2、B【解析】利用函数单调性及中间值比大小.【详解】,且,故,,故.故选:B3、A【解析】令=,得x=1,此时y=5所以函数=的图象恒过定点(1,5).选A点睛:(1)求函数(且)的图象过的定点时,可令,求得的值,再求得,可得函数图象所过的定点为(2)求函数(且)的图象过的定点时,可令,求得的值,再求得,可得函数图象所过的定点为4、A【解析】结合三角形内角与充分、必要条件的知识确定正确选项.【详解】在中,,所以,所以在中,“”是“”的充要条件.故选:A5、A【解析】利用分层抽样的等比例性质,结合已知求样本中中年职工人数.【详解】由题意知,青年职工人数:中年职工人数:老年职工人数=350:250:150=7:5:3由样本中的青年职工为14人,可得中年职工人数为10故选:A6、D【解析】根据对数函数的性质,得到函数为单调递增函数,再利用零点的存在性定理,即可求解,得到答案.【详解】由题意,函数,可得函数为单调递增函数,且是连续函数又由f(1)=ln2-1<0,f(2)=ln4-1>0,根据函数零点的存在性定理可得,函数f(x)的零点位于区间(1,2)上故选D.【点睛】本题主要考查了函数的零点问题,其中解答中合理使用函数零点的存在性定理是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.7、D【解析】根据函数的奇偶性可排除选项A,B;根据函数在上的单调性可排除选项C,进而可得正确选项.【详解】函数的定义域为且,关于原点对称,因为,所以是偶函数,图象关于轴对称,故排除选项A,B,当时,,由在上单调递增,在上单调递减,可得在上单调递增,排除选项C,故选:D.8、C【解析】利用交集定义直接求解【详解】∵集合A={x|-1≤x≤2},B={0,1,2,3},∴A∩B={0,1,2}故选:C9、B【解析】根据图像得到,,计算排除得到答案.【详解】根据图像知选项:,排除;D选项:,排除;根据图像知选项:,排除;故选:【点睛】本题考查了三角函数图像的识别,计算特殊值可以快速排除选项,是解题的关键.10、A【解析】分段解方程即可.【详解】当时,,解得(舍去);当时,,解得或(舍去).故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、①.2②.##【解析】根据最低点的坐标和函数的零点,可以求出周期,进而可以求出的值,再把最低点的坐标代入函数解析式中,最后求出的值.【详解】通过函数的图象可知,点B、C的中点为,与它隔一个零点是,设函数的最小正周期为,则,而,把代入函数解析式中,得.故答案为:;12、【解析】当时,有,此时,此时为减函数,不合题意.若,则,故,检验知符合题意13、1【解析】根据反函数的定义即可求解.【详解】由题知y=f(x)=,∴f(2)=1.故答案为:1.14、【解析】由题意得15、8100【解析】设小矩形的高为,把面积用表示出来,再根据二次函数的性质求得最大值【详解】解:设每个小矩形的高为am,则长为,记面积为则当时,所围矩形面积最大值为故答案8100【点睛】本题考查函数的应用,解题关键是寻找一个变量,把面积表示为此变量的函数,再根据函数的知识求得最值.本题属于基础题16、①②③④【解析】利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【详解】①当时,由数域的定义可知,若,则有,即,,故①是真命题;②因为,若,则,则,,则2019,所以,故②是真命题;③,当且时,则,因此只要这个数不为就一定成对出现,所以有限数域的元素个数必为奇数,所以③是真命题;④若,则,且时,,故④是真命题;⑤当时,,所以偶数集不是一个数域,故⑤是假命题;故答案为:①②③④【点睛】关键点点睛:理解数域就是对加减乘除封闭的集合,是解题的关键,一定要读懂题目再入手,没有一个条件是多余的,是难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为50千件时,所获得利润最大,最大利润是950万元.18、(1)102(2)【解析】根据指数幂运算律和对数运算律,计算即得解【小问1详解】【小问2详解】19、(1)(2)(3)图象见解析,单调递减区间是,单调递增区间是,最小值为1【解析】(1)根据题意可得,平方即可求解.(2)由题意比较与大小,从而可得出答案.(3)由(2)得到的函数关系,作出函数图像,根据图像可得函数的单调区间和最小值.【小问1详解】由,得且,解得,;所以方程的解集为【小问2详解】由已知得.【小问3详解】函数的图象如图实线所示:函数的单调递减区间是,单调递增区间是,其最小值为1.20、(1),;(2);【解析】(1)利用降幂公式与辅助角公式将化简,在利用正弦函数的单调性质即可求得函数的单调递增区间;(2)由的取值范围,求出的范围,利用正弦函数的单调性即可求得函数的取值范围【详解】解:(1)因为由,,解得,,所以的单调递增区间为,;(2),,当即时,当即时,,即21、(1)见解析;(2)值域为.【解析】分析:(1)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年合同样本:中外合资企业合作协议
- 临床概要外科学试题及答案2025年版
- 临床定考试题库及答案2025年版
- 临床安全合理输血考试题及答案2025年版
- 2025年文化旅游演艺剧目沉浸式体验与运营模式创新
- 2025年特色小镇休闲农业产业创新模式可行性研究报告
- 2025年城市供用电合同范本
- 镭射膜工艺知识培训内容课件
- 镜头知识培训内容摘要
- 2025年3D建模技术在文化遗产保护中的实践
- 农业产业链风险管理
- 专题02 文言文概括分析与概述(教案)-2022年高考语文一轮复习之文言文阅读概括分析与概述宝鉴
- 血管活性药物静脉输注护理
- JT-T-807-2011汽车驾驶节能操作规范
- 人工智能创新实验教程 课件 第15章 VGG16网络
- 2024年个人信用报告(个人简版)样本(带水印-可编辑)
- SYT 7653-2021 石油天然气钻采设备 耐蚀螺栓连接
- 一例CAG循证护理查房
- 安全生产投入台账(模板)
- 委托书办理压力容器使用登记证
- 粤绣行业发展前景分析报告
评论
0/150
提交评论