吉林省延边朝鲜族自治州汪清县第六中学2025届数学高一上期末监测模拟试题含解析_第1页
吉林省延边朝鲜族自治州汪清县第六中学2025届数学高一上期末监测模拟试题含解析_第2页
吉林省延边朝鲜族自治州汪清县第六中学2025届数学高一上期末监测模拟试题含解析_第3页
吉林省延边朝鲜族自治州汪清县第六中学2025届数学高一上期末监测模拟试题含解析_第4页
吉林省延边朝鲜族自治州汪清县第六中学2025届数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省延边朝鲜族自治州汪清县第六中学2025届数学高一上期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在上的奇函数,当时,,则的值域是A. B.C. D.2.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B.C. D.3.若,则()A B.C. D.4.在实数的原有运算法则中,补充定义新运算“”如下:当时,;当时,,已知函数,则满足的实数的取值范围是A. B.C. D.5.已知正方体的个顶点中,有个为一侧面是等边三角形的正三棱锥的顶点,则这个正三棱锥与正方体的全面积之比为A. B.C. D.6.在空间直角坐标系中,点在轴上,且点到点与点的距离相等,则点坐标为()A. B.C. D.7.在平面直角坐标系中,大小为的角始边与轴非负半轴重合,顶点与原点O重合,其终边与圆心在原点,半径为3的圆相交于一点P,点Q坐标为,则的面积为()A. B.C. D.28.已知角的终边过点,则()A. B.C. D.9.若,,若,则a的取值集合为()A. B.C. D.10.为了得到函数的图像,只需把函数的图像上()A.各点的横坐标缩短到原来的倍,再向左平移个单位B.各点的横坐标缩短到原来的倍,再向左平移个单位C.各点的横坐标缩短到原来的2倍,再向左平移个单位D.各点的横坐标缩短到原来的2倍,再向左平移个单位二、填空题:本大题共6小题,每小题5分,共30分。11.已知一个扇形的弧所对的圆心角为54°,半径r=20cm,则该扇形的弧长为_____cm12.下列命题中,正确命题的序号为______①单位向量都相等;②若向量,满足,则;③向量就是有向线段;④模为的向量叫零向量;⑤向量,共线与向量意义是相同的13.新冠疫情防控常态化,核酸检测应检尽检!核酸检测分析是用荧光定量PCR法,通过化学物质的荧光信号,对在PCR扩增进程中成指数级增加的靶标DNA实时检测,在PCR扩增的指数时期,荧光信号强度达到阈值时,DNA的数量与扩增次数n满足:,其中p为扩增效率,为DNA的初始数量.已知某被测标本DNA扩增8次后,数量变为原来的100倍,那么该标本的扩增效率p约为___________;该被测标本DNA扩增13次后,数量变为原来的___________倍.(参考数据:,,,,)14.若,则的最小值是___________,此时___________.15.已知正实数满足,则当__________时,的最小值是__________16.下图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后,左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体的体积为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是偶函数,是奇函数,且,(1)求和的表达式;(2)若对于任意的,不等式恒成立,求的最大值18.已知函数(,且).(1)若函数在上的最大值为2,求的值;(2)若,求使得成立的的取值范围.19.已知角终边与单位圆交于点(1)求的值;(2)若,求的值.20.某公司为了解宿州市用户对其产品的满意度,从宿州市,两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到地区用户满意度评分的频率分布直方图(如图)和地区的用户满意度评分的频数分布表(如表1)满意度评分频数2814106表1满意度评分低于70分满意度等级不满意满意非常满意表2(1)求图中的值,并分别求出,两地区样本用户满意度评分低于70分的频率(2)根据用户满意度评分,将用户的满意度分为三个等级(如表2),将频率看作概率,从,两地用户中各随机抽查1名用户进行调查,求至少有一名用户评分满意度等级为“满意”或“非常满意”的概率.21.如图所示,在四棱锥中,底面是正方形,侧棱底面,,是的中点,过点作交于点.(1)证明:平面;(2)证明:平面;(3)求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据函数为奇函数得到,,再计算时,得到答案.【详解】定义在上的奇函数,则,;当时,,则当时,;故的值域是故选:【点睛】本题考查了函数的值域,根据函数的奇偶性得到时,是解题的关键.2、C【解析】根据异面直线所成角的定义,找到与直线平行并且和相交的直线,即可找到异面直线所成的角,解三角形可求得结果.【详解】连接如下图所示,分别是棱和棱的中点,,正方体中可知,是异面直线所成的角,为等边三角形,.故选:C.【点睛】此题是个基础题,考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想.3、C【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论4、C【解析】当时,;当时,;所以,易知,在单调递增,在单调递增,且时,,时,,则在上单调递增,所以得:,解得,故选C点睛:新定义的题关键是读懂题意,根据条件,得到,通过单调性分析,得到在上单调递增,解不等式,要符合定义域和单调性的双重要求,则,解得答案5、A【解析】所求的全面积之比为:,故选A.6、B【解析】先由题意设点的坐标为,根据空间中的两点间距离公式,列出等式,求出,即可得出结果.【详解】因为点在轴上,所以可设点的坐标为,依题意,得,解得,则点的坐标为故选:B.7、B【解析】根据题意可得、,结合三角形的面积公式计算即可.【详解】由题意知,,,所以.故选:B8、A【解析】根据三角函数的定义计算可得;【详解】解:因为角终边过点,所以;故选:A9、B【解析】或,分类求解,根据可求得的取值集合【详解】或,,,或或,解得或,综上,故选:10、B【解析】各点的横坐标缩短到原来的倍,变为,再向左平移个单位,得到.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用扇形的弧长公式求弧长即可.【详解】由弧长公式知:该扇形的弧长为(cm).故答案为:12、④⑤【解析】由向量中单位向量,向量相等、零向量和共线向量的定义进行判断,即可得出答案.【详解】对于①.单位向量方向不同时,不相等,故不正确.对于②.向量,满足时,若方向不同时,不相等,故不正确.对于③.有向线段是有方向的线段,向量是既有大小、又有方向的量.向量可以用有向线段来表示,二者不等同,故不正确,对于④.根据零向量的定义,正确.对于⑤.根据共线向量是方向相同或相反的向量,也叫平行向量,故正确.故答案为:④⑤13、①.0.778②.1788【解析】①对数运算,由某被测标本DNA扩增8次后,数量变为原来的100倍,可以求出p;②由n=13,可以求数量是原来的多少倍.【详解】故答案为:①0.778;②1778.14、①.1②.0【解析】利用基本不等式求解.【详解】因为,所以,当且仅当,即时,等号成立,所以其最小值是1,此时0,故答案为:1,015、①.②.6【解析】利用基本不等式可知,当且仅当“”时取等号.而运用基本不等式后,结合二次函数的性质可知恰在时取得最小值,由此得解.【详解】解:由题意可知:,即,当且仅当“”时取等号,,当且仅当“”时取等号.故答案为:,6.【点睛】本题考查基本不等式的应用,同时也考查了配方法及二次函数的图像及性质,属于基础题.16、【解析】该几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.【详解】该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为.交叉部分的体积为四棱锥的体积的2倍.在等腰中,边上的高为2,则由该几何体前后,左右上下均对称,知四边形为边长为的菱形.设的中点为,连接易证即为四棱锥的高,在中,又所以因为,所以,所以求体积为故答案为:【点睛】本题考查空间组合体的结构特征.关键点弄清楚几何体的组成,属于较易题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】(1)根据已知的关系式以及函数的奇偶性列出另一个关系式,联立求出函数和的表达式;(2)先将已知不等式进行化简,然后可以分离参数,利用基本不等式求最值即可求解.【详解】(1)因为为偶函数,为奇函数,①,所以,即②,联立①②,解得:,,(2)因为,,由对于任意的恒成立,可得对于任意的恒成立,即对于任意的恒成立,所以对于任意的恒成立,所以,因为,当且仅当即时等号成立,所以,所以的最大值为18、(1)或;(2)【解析】(1)分类讨论和两种情况,结合函数的单调性可得:或;(2)结合函数的解析式,利用指数函数的单调性可得,求解对数不等式可得的取值范围是.试题解析:(1)当时,在上单调递增,因此,,即;当时,上单调递减,因此,,即.综上,或.(2)不等式即.又,则,即,所以.19、(1);(2)或.【解析】(1)首先根据三角函数的定义,求得三角函数值,再结合二倍角公式化简,求值;(2)利用角的变换,利用两角和的余弦公式,化简求值.【详解】解:由三角函数定义得,(1)(2)∵∴∴当时当时20、(1);地区样本用户满意度评分低于70分的频率为;地区样本用户满意度评分低于70分的频率为(2)【解析】(1)由频率和等于1计算可求得,进而计算低于70分的频率即可得出结果.(2)由(1)可知,记从地区随机抽取一名用户评分低于70分的事件记为,则;可以记从地区随机抽取一名用户评分低于的事件记为,则,由对立事件的概率公式计算即可得出结果.【小问1详解】根据地区的频率直方图可得,解得所以地区样本用户满意度评分低于70分的频率为地区样本用户满意度评分低于70分的频率为【小问2详解】根据用样本频率可以估计总体的频率,可以记从地区随机抽取一名用户评分低于70分的事件记为,则;可以记从地区随机抽取一名用户评分低于的事件记为,则易知事件和事件相互独立,则事件和事件相互独立,记事件“至少有一名用户评分满意度等级为“满意”或“非常满意””为事件所以故至少有一名用户评分满意度等级为“满意”或“非常满意”的概率为21、(1)见解析;(2)见解析;(3).【解析】(1)连接交于点,连接,利用中位线定理得出∥,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论