




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届北京市东城区高二上数学期末考试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线过点,,则直线的方程为()A. B.C. D.2.已知直线:和直线:,抛物线上一动点P到直线和直线的距离之和的最小值是()A. B.C. D.3.已知抛物线C:,焦点为F,点到在抛物线上,则()A.3 B.2C. D.4.已知点,在双曲线上,线段的中点,则()A. B.C. D.5.已知A,B,C是椭圆M:上三点,且A(A在第一象限,B关于原点对称,,过A作x轴的垂线交椭圆M于点D,交BC于点E,若直线AC与BC的斜率之积为,则()A.椭圆M的离心率为 B.椭圆M的离心率为C. D.6.设,分别为具有公共焦点与椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为A. B.1C.2 D.不确定7.已知双曲线的实轴长为10,则该双曲线的渐近线的斜率为()A. B.C. D.8.已知是等差数列的前项和,,,则的最小值为()A. B.C. D.9.已知双曲线:,直线经过点,若直线与双曲线的右支只有一个交点,则直线的斜率的取值范围是()A. B.C. D.10.已知直线与x轴,y轴分别交于A,B两点,且直线l与圆相切,则的面积的最小值为()A.1 B.2C.3 D.411.执行如图所示的程序框图,若输入,则输出的m的值是()A.-1 B.0C.0.1 D.112.已知直线与椭圆:()相交于,两点,且线段的中点在直线:上,则椭圆的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,四边形和均为正方形,它们所在的平面互相垂直,动点在线段上,、分别为、的中点.设异面直线与所成的角为,则的最大值为____14.已知点为抛物线的焦点,,点为抛物线上一动点,当最小时,点恰好在以为焦点的双曲线上,则该双曲线的离心率为___________.15.已知A,B为x,y正半轴上的动点,且,O为坐标原点,现以为边长在第一象限做正方形,则的最大值为___________.16.若在数列的每相邻两项之间插入此两项的和,可形成新的数列,再把所得数列按照同样的方法不断进行构造,又可以得到新的数列.现将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;依次构造,第次得到数列1,,,,…,,2;记则______,设数列的前n项和为,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C:,圆C与x轴交于A,B两点(1)求直线y=x被圆C所截得的弦长;(2)圆M过点A,B,且圆心在直线y=x+1上,求圆M的方程18.(12分)已知二次函数.(1)若时,不等式恒成立,求实数a的取值范围;(2)解关于x的不等式(其中).19.(12分)已知函数.(1)若,求函数在处的切线方程;(2)讨论函数在上的单调性.20.(12分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.点E在PC上.(1)求证:平面BDE⊥平面PAC;(2)若E为PC的中点,求直线PC与平面AED所成的角的正弦值.21.(12分)已知函数.(1)求函数的极值;(2)若对恒成立,求实数a的取值范围.22.(10分)如图,正方体的棱长为2,点为的中点.(1)求直线与平面所成角的正弦值;(2)求点到平面的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据两点的坐标和直线的两点式方程计算化简即可.【详解】由直线的两点式方程可得,直线l的方程为,即故选:C2、A【解析】根据已知条件,结合抛物线的定义,可得点P到直线和直线的距离之和,当B,P,F三点共线时,最小,再结合点到直线的距离公式,即可求解【详解】∵抛物线,∴抛物线的准线为,焦点为,∴点P到准线的距离PA等于点P到焦点F的距离PF,即,∴点P到直线和直线的距离之和,∴当B,P,F三点共线时,最小,∵,∴,∴点P到直线和直线的距离之和的最小值为故选:A3、D【解析】利用抛物线的定义求解.【详解】因为点在抛物线上,,解得,利用抛物线的定义知故选:D4、D【解析】先根据中点弦定理求出直线的斜率,然后求出直线的方程,联立后利用弦长公式求解的长.【详解】设,,则可得方程组:,两式相减得:,即,其中因为的中点为,故,故,即直线的斜率为,故直线的方程为:,联立,解得:,由韦达定理得:,,则故选:D5、C【解析】设出点,,的坐标,将点,分别代入椭圆方程两式作差,构造直线和的斜率之积,得到,即可求椭圆的离心率,利用,求出,可知点在轴上,且为的中点,则.【详解】设,,,则,,,两式相减并化简得,即,则,则AB错误;∵,,∴,又∵,∴,即,解得,则点在轴上,且为的中点即,则正确.故选:C.6、C【解析】根据题意,设它们共同的焦距为2c、椭圆的长轴长2a、双曲线的实轴长为2m,由椭圆和双曲线的定义及勾弦定理建立关于a、c、m的方程,联解可得a2+m2=2c2,再根据离心率的定义求解【详解】由题意设焦距为2c,椭圆的长轴长2a,双曲线的实轴长为2m,设P在双曲线的右支上,由双曲线的定义得|PF1|﹣|PF2|=2m①由椭圆的定义|PF1|+|PF2|=2a②又∵,∴,可得∠F1PF2=900,故|PF1|2+|PF2|2=4c2③,①平方+②平方,得|PF1|2+|PF2|2=2a2+2m2④将④代入③,化简得a2+m2=2c2,即,可得,所以=.故选:C7、B【解析】利用双曲线的实轴长为,求出,即可求出该双曲线的渐近线的斜率.【详解】由题意,,所以,,所以双曲线的渐近线的斜率为.故选:B.【点睛】本题考查双曲线的方程与性质,考查学生的计算能力,属于基础题.8、C【解析】根据,可得,再根据,得,从而可得出答案.【详解】解:因为,所以,又,所以,所以的最小值为.故选:C.9、D【解析】以双曲线的两条渐近线作为边界条件,即可保证直线与双曲线的右支只有一个交点.【详解】双曲线:的两条渐近线为和两渐近线的倾斜角分别为和由经过点的直线与双曲线的右支只有一个交点,可知直线的倾斜角取值范围为,故直线的斜率的取值范围是故选:D10、A【解析】由直线与圆相切可得,再利用基本不等式即求.【详解】由已知可得,,因为直线与圆相切,所以,即,因为,当且仅当时取等号,所以,,所以面积的最小值为1.故选:A11、B【解析】计算后,根据判断框直接判断即可得解.【详解】输入,计算,判断为否,计算,输出.故选:B.12、A【解析】将直线代入椭圆方程整理得关于的方程,运用韦达定理,求出中点坐标,再由条件得到,再由,,的关系和离心率公式,即可求出离心率.【详解】解:将直线代入椭圆方程得,,即,设,,,,则,即中点的横坐标是,纵坐标是,由于线段的中点在直线上,则,又,则,,即椭圆的离心率为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】如图所示,建立空间直角坐标系,设,,,,,由向量法可得,令,,,利用导数研究函数的单调性即可求得的最大值,从而可得答案【详解】解:由题意,根据已知条件,直线AB,AD,AQ两两互相垂直,所以建立如图所示空间直角坐标系不妨设,则,0,,,0,,,1,,设,,,,,,,,,,,令,,则,函数在上单调递减,时,函数取得最大值,的最大值为故答案为:14、【解析】设点,根据抛物线的定义表示出,将用表示,并逐步转化为一个基本不等式形式,从而求出取最小值时的点的坐标,再根据双曲线的定义及离心率的公式求值.【详解】由题意可得,,,抛物线的准线为,设点,根据对称性,不妨设,由抛物线的定义可知,又,所以,当且仅当时,等号成立,此时,设以为焦点的双曲线方程为,则,即,又,,所以离心率.故答案为:.【点睛】关键点点睛:本题的关键是将的坐标表达式逐渐转化为一个可以用基本不等式求最值的式子,从而找出取最小值时的点的坐标.15、32【解析】建立平面直角坐标系,设出角度和边长,表达出点坐标,进而表达出,利用三角函数换元,求出最大值.【详解】如图,过点D作DE⊥x轴于点E,过点C作CF⊥y轴于点F,设,(),则由三角形全等可知,设,,则,则,,则,令,,则,当时,取得最大值,最大值为32故答案为:3216、①.81②.【解析】根据数列的构造写出前面几次得到的新数列,寻找规律,构造等比数列,求出通项公式,再进行求和.【详解】第1次得到数列1,3,2,此时;第2次得到数列1,4,3,5,2,此时;第3次得到数列1,5,4,7,3,8,5,7,2,此时;第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时,故81,且故,又,所以数列是以为首项,公比为3的等比数列,所以,故,所以故答案为:81,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据已知条件,结合垂径定理,以及点到直线的距离公式,即可求解(2)根据已知圆的方程,令y=0,结合韦达定理,求出圆心的横坐标,即可求出圆心,再结合勾股定理,即可求出半径【小问1详解】∵圆C:,∴,即圆心为(-1,1),半径r=3,∵直线y=x,即x-y=0,∴圆心(-1,1)到直线x-y=0的距离d=,∴直线y=x被圆C所截得的弦长为=【小问2详解】设A(x1,y1),B(x2,y2),∵圆C:,圆C与x轴交于A,B两点,∴x2-2x-7=0,则,|x1-x2|==,∴圆心的横坐标为x=,∵圆心在直线y=x+1上,∴圆心为(1,2),∴半径r=,故圆M的方程为18、(1)(2)答案见解析【解析】(1)当时将原不等式变形为,根据基本不等式计算即可;(2)将原不等式化为,求出参数a分别取值、、时的解集.【小问1详解】不等式即为:,当时,不等式可变形为:,因为,当且仅当时取等号,所以,所以实数a的取值范围是;【小问2详解】不等式,即,等价于,转化为;当时,因为,所以不等式的解集为;当时,因为,所以不等式的解集为;当时,因为,所以不等式的解集为;综上所述,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.19、(1)(2)答案见解析【解析】(1)求出导函数后计算得斜率,由点斜式得直线方程并整理;(2)求出导函数,然后分类讨论它在上的正负得单调性【小问1详解】当时,,则,故切线的斜率.又.所以函数在处的切线方程为:.【小问2详解】由,得①当时,在上单调递减;②当时,在上单调递减;③当时,令,得当时,在上单调递减;当时,在单调递增;④当时,在上单调递增;综上:当时,在上单调递减;当时,在上单调递减,在上单调递增;当时,在上单调递增.20、(1)证明见解析;(2)【解析】(1)根据题意可判断出ABCD是正方形,从而可得,再根据,由线面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可证出;(2)由、、两两垂直可建立空间直角坐标系,利用向量法即可求出直线PC与平面AED所成的角的正弦值.【小问1详解】因为PA⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小问2详解】由题可知、、两两垂直,建系如图,,0,,,2,,,0,,,2,,,1,,,,,,1,,,2,,设平面的一个法向量为,则,,即,取,0,,所以直线与平面所成的角的正弦值为21、(1)极大值为,无极小值(2)【解析】(1)求函数的导数,根据导数的正负判断极值点,代入原函数计算即可;(2)将变形,即对恒成立,然后构造函数,利用求导判定函数的单调性,进而确定实数a的取值范围..【小问1详解】对函数求导可得:,可知当时,时,,即可知在上单调递增,在上单调递减由上可知,的极大值为,无极小值【小问2详解】由对恒成立,当时,恒成立;当时,对恒成立,可变形为:对恒成立,令,则;求导可得:由(1)知即恒成立,当时,,则在上单调递增;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碘苯酚酞企业数字化转型与智慧升级战略研究报告
- 智能测绘教育应用行业跨境出海战略研究报告
- 滑石清热利湿粉行业深度调研及发展战略咨询报告
- 智能摄影全景拍摄行业深度调研及发展战略咨询报告
- 智能水龙头节水控制系统企业制定与实施新质生产力战略研究报告
- 头孢三嗪企业ESG实践与创新战略研究报告
- 潮汐能辅助钻井能源系统行业深度调研及发展战略咨询报告
- 智能学习卡片机行业深度调研及发展战略咨询报告
- 玉米无人售卖机企业制定与实施新质生产力战略研究报告
- 智能服务数据分析报表行业跨境出海战略研究报告
- 人教部编版三年级语文下册 课课练-第21课 我不能失信(含答案)
- 2025上半年黑龙江大庆市肇源县人才引进110人重点基础提升(共500题)附带答案详解
- CSC-300系列数字式发变组保护装置的调试说明
- (二调)武汉市2025届高中毕业生二月调研考试 语文试卷(含官方答案解析)
- 比亚迪秦EV新能源汽车电机驱动系统
- 2025-2030年中国电力行业发展前景预测与投资战略规划分析报告
- 20《井冈翠竹》(+公开课一等奖创新教案)
- 西医骨科发展简史
- 2025年幼儿园家园共育工作计划
- 初中语文教师校本培训内容
- 2025年贵州铜仁市玉屏永昇国有资产投资管理有限公司招聘笔试参考题库附带答案详解
评论
0/150
提交评论