中考物理热身梯形含解析2025届高二数学第一学期期末达标检测模拟试题含解析_第1页
中考物理热身梯形含解析2025届高二数学第一学期期末达标检测模拟试题含解析_第2页
中考物理热身梯形含解析2025届高二数学第一学期期末达标检测模拟试题含解析_第3页
中考物理热身梯形含解析2025届高二数学第一学期期末达标检测模拟试题含解析_第4页
中考物理热身梯形含解析2025届高二数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考物理热身梯形含解析2025届高二数学第一学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点与不重合的点A,B共线,若以A,B为圆心,2为半径的两圆均过点,则的取值范围为()A. B.C. D.2.下列命题正确的是()A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面3.已知双曲线的两个焦点为,,是此双曲线上的一点,且满足,,则该双曲线的方程是()A. B.C. D.4.某市2016年至2020年新能源汽车年销量y(单位:百台)与年份代号x的数据如下表:年份20162017201820192020年份代号x01234年销量y1015m3035若根据表中的数据用最小二乘法求得y关于x的回归直线方程为,则表中m的值为()A.22 B.20C.30 D.32.55.在数列中,,,则()A. B.C. D.6.已知函数的图象如图所示,则其导函数的图象大致形状为()A. B.C. D.7.下列命题中是真命题的是()A.“”是“”的充分非必要条件B.“”是“”的必要非充分条件C.在中“”是“”的充分非必要条件D.“”是“”的充要条件8.古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线共性,并给出了圆锥曲线的统一定义,只可惜对这一定义欧几里得没有给出证明.经过了500年,到了3世纪,希腊数学家帕普斯在他的著作《数学汇篇》中,完善了欧几里得关于圆锥曲线的统一定义,并对这一定义进行了证明.他指出,到定点的距离与到定直线的距离的比是常数的点的轨迹叫做圆锥曲线;当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线.现有方程表示的曲线是双曲线,则的取值范围为()A. B.C. D.9.在棱长为1的正方体中,是线段上一个动点,则下列结论正确的有()A.不存在点使得异面直线与所成角为90°B.存在点使得异面直线与所成角为45°C.存在点使得二面角的平面角为45°D.当时,平面截正方体所得的截面面积为10.已知在一次降雨过程中,某地降雨量(单位:mm)与时间t(单位:min)的函数关系可表示为,则在时的瞬时降雨强度为()mm/min.A. B.C.20 D.40011.已知:,:,若是的充分不必要条件,则实数的取值范围是()A. B.C. D.12.已知抛物线的焦点为F,过F作斜率为2的直线l与抛物线交于A,B两点,若弦的中点到抛物线准线的距离为3,则抛物线的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,按照以下规律排列的数阵中,第i行从左向右第j个数记为,如,,则______;令则______14.若“”是真命题,则实数的最小值为_____________.15.已知向量,,且,则实数______.16.中国三大名楼之一的黄鹤楼因其独特的建筑结构而闻名,其外观有五层而实际上内部有九层,隐喻“九五至尊”之意,为迎接2022年春节的到来,有网友建议在黄鹤楼内部挂灯笼进行装饰,若在黄鹤楼内部九层塔楼共挂1533盏灯笼,且相邻的两层中,下一层的灯笼数是上一层灯笼数的两倍,则内部塔楼的顶层应挂______盏灯笼三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,点为坐标原点,直线过定点(其中,)与抛物线相交于两点(点位于第一象限.(1)当时,求证:;(2)如图,连接并延长交抛物线于两点,,设和的面积分别为和,则是否为定值?若是,求出其值;若不是,请说明理由.18.(12分)某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?19.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由20.(12分)如图,在平面直角标系中,已知n个圆与x轴和线均相切,且任意相邻的两个圆外切,其中圆.(1)求数列通项公式;(2)记n个圆的面积之和为S,求证:.21.(12分)已知点是圆:上任意一点,是圆内一点,线段的垂直平分线与半径相交于点(1)当点在圆上运动时,求点的轨迹的方程;(2)设不经过坐标原点,且斜率为的直线与曲线相交于,两点,记,的斜率分别是,.当,都存在且不为时,试探究是否为定值?若是,求出此定值;若不是,请说明理由22.(10分)如图所示,已知定点为曲线上一个动点,求线段中点的轨迹方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由题意可得两点的坐标满足圆,然后由圆的性质可得当时,弦长最小,当过点时,弦长最长,再根据向量数量积的运算律求解即可【详解】设点,则以A,B为圆心,2为半径的两圆方程分别为和,因为两圆过,所以和,所以两点的坐标满足圆,因为点与不重合的点A,B共线,所以为圆的一条弦,所以当弦长最小时,,因为,半径为2,所以弦长的最小值为,当过点时,弦长最长为4,因为,所以当弦长最小时,的最大值为,当弦长最大时,的最小值为,所以的取值范围为,故选:D2、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D3、A【解析】由,可得进一步求出,由此得到,则该双曲线的方程可求【详解】,即,则.即,则该双曲线的方程是:故选:A【点睛】方法点睛:求圆锥曲线的方程,常用待定系数法,先定式(根据已知确定焦点所在的坐标轴,设出曲线的方程),再定式(根据已知建立方程组解方程组得解).4、B【解析】求出样本中心的横坐标,代入回归直线方程,求出样本中心的纵坐标,然后求解即可【详解】因为,代入回归直线方程为,所以,,于是得,解得故选:B5、A【解析】根据已知条件,利用累加法得到的通项公式,从而得到.【详解】由,得,所以,所以.故选:A.6、A【解析】利用f(x)先单调递增的速度由快到慢,再由慢到快,结合导数的几何意义判断即可.【详解】由f(x)的图象可知,函数f(x)先单调递增的速度由快到慢,再由慢到快,由导数的几何意义可知,先减后增,且恒大于0,故符合题意的只有选项A.故选:A.7、B【解析】根据充分条件、必要条件、充要条件的定义依次判断.【详解】当时,,非充分,故A错.当不能推出,所以非充分,,所以是必要条件,故B正确.当在中,,反之,故为充要条件,故C错;当时,,,,充分条件,因为,当时成立,非必要条件,故D错.故选:B.8、C【解析】对方程进行化简可得双曲线上一点到定点与定直线之比为常数,进而可得结果.【详解】已知方程可以变形为,即,∴其表示双曲线上一点到定点与定直线之比为常数,又由,可得,故选:C.9、D【解析】由正方体的性质可将异面直线与所成的角可转化为直线与所成角,而当为的中点时,可得,可判断A;与或重合时,直线与所成的角最小可判断B;当与重合时,二面角的平面角最小,通过计算可判断C;过作,交于,交于点,由题意可得四边形即为平面截正方体所得的截面,且四边形是等腰梯形,然后利用已知数据计算即可判断D.【详解】异面直线与所成的角可转化为直线与所成角,当为中点时,,此时与所成的角为90°,所以A错误;当与或重合时,直线与所成角最小,为60°,所以B错误;当与重合时,二面角的平面角最小,,所以,所以C错误;对于D,过作,交于,交于点,因为,所以、分别是、的中点,又,所以,四边形即为平面截正方体所得的截面,因为,且,所以四边形是等腰梯形,作交于点,所以,,所以梯形的面积为,所以D正确.故选:D.10、B【解析】对题设函数求导,再求时对应的导数值,即可得答案.【详解】由题设,,则,所以在时的瞬时降雨强度为mm/min.故选:B11、C【解析】由是的充分不必要条件,则是的充分不必要条件,再根据对应集合的包含关系可得答案.【详解】由,即,设,由是的充分不必要条件,则是的充分不必要条件所以,则故选:C12、B【解析】设出直线,并与抛物线联立,得到,再根据抛物线的定义建立等式即可求解.【详解】因为直线l的方程为,即,由消去y,得,设,则,又因为弦的中点到抛物线的准线的距离为3,所以,而,所以,故,解得,所以抛物线的方程为故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、①.55②.【解析】令易知是首项为,公差为1的等差数列,写出通项公式,再应用累加法求及通项公式,结合求通项公式,进而可得,最后两次应用错位相减法求即可.【详解】由题设知:令,则是首项为,公差为1的等差数列,故,所以,即,由上可得:,则,而,所以,则,所以,,所以,令,则,所以,故,综上,,则.故答案为:,.【点睛】关键点点睛:通过图总结规律,易知是等差数列,应用累加法求,再由求通项公式,最后应用错位相减法求前n项和.14、1【解析】若“”是真命题,则大于或等于函数在的最大值因为函数在上为增函数,所以,函数在上的最大值为1,所以,,即实数的最小值为1.所以答案应填:1.考点:1、命题;2、正切函数的性质.15、【解析】利用向量平行的条件直接解出.【详解】因为向量,,且,所以,解得.故答案为:.16、【解析】根据给定条件,各层灯笼数从上到下排成一列构成等比数列,利用等比数列前n项和公式计算作答.【详解】依题意,各层灯笼数从上到下排成一列构成等比数列,公比,前9项和为1533,于是得,解得,所以内部塔楼的顶层应挂3盏灯笼.故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)是定值,定值为.【解析】(1)设直线方程为,联立直线与抛物线的方程得到韦达定理,再利用韦达定理求出,即得证;(2)设直线方程为,联立直线与抛物线的方程得到韦达定理,再求出,,即得解.【详解】(1)设直线方程为,联立直线与抛物线的方程,消去,得,所以.所以即.(2)设直线方程为,联立直线与抛物线的方程,消去,得,故.设的方程为,联立直线与拋物线的方程,消去得,从而,则,同理可得,,即定值.18、(1);(2),;(3)【解析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数试题解析:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方图中x的值是0.0075.-------------3分(2)月平均用电量的众数是=230.-------------5分因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a=224,所以月平均用电量的中位数是224.------------8分(3)月平均用电量为[220,240)的用户有0.0125×20×100=25户,月平均用电量为[240,260)的用户有0.0075×20×100=15户,月平均用电量为[260,280)的用户有0.005×20×100=10户,月平均用电量为[280,300]的用户有0.0025×20×100=5户,-------------10分抽取比例==,所以月平均用电量在[220,240)的用户中应抽取25×=5户.--12分考点:频率分布直方图及分层抽样19、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果【小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,在中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因为,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,设平面的法向量为,则,令,则,则平面与平面夹角的余弦值为,两边平方得,,解得或(舍去),所以,所以20、(1).(2)证明见解析.【解析】(1)由已知得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论