




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
滨城高中联盟2024-2025学年度上学期高三期中Ⅰ考试数学试卷命题人:大连市第二十高级中学卢永娜校对人:大连市第二十高级中学苑清治第Ⅰ卷(选择题共58分)一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.2.“”是“函数在上单调递减”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.在中,点D在边AB上,.记,,则()A. B. C. D.4.函数的值域为()A. B. C. D.5.函数的单调递增区间为()A. B. C. D.6.已知,,则()A. B. C. D.7,设是定义域为R的偶函数,且在单调递增,则()A. B.C. D.8.已知向量,,函数.若对于任意的,,且,均有成立,则实数t的取值范围为()A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列式子的运算结果为的是()A. B.C. D.10.已知向量,,则()A. B.与向量共线的单位向量是C. D.向量在向量上的投影向量是11.已知函数,且对,都有,把图象上所有的点,纵坐标不变,横坐标变为原来的,再把所得函数的图象向右平移个单位,得到函数的图像,则下列说法正确的是()A. B.C.为偶函数 D.在上有1个零点第Ⅱ卷(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.已知向量,,若,则实数______.13.已知函数,若,,且,则的最小值是______.14.已知函数,则的最大值是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知.(1)求的值;(2)若,是方程的两个根,求的值.16.(本小题满分15分)已知函数在时取得极大值1.(1)求曲线在点处的切线方程;(2)求过点与曲线相切的直线方程.17.(本小题满分15分)已知函数为奇函数.(1)求实数a的值;(2)设函数,若对任意的,总存在,使得成立,求实数m的取值范围.18.(本小题满分17分)已知函数,.(1)求函数的极值;(2)若函数在区间上单调递增,求a的最小值;(3)如果存在实数m、n,其中,使得,求的取值范围.19.(本小题满分17分)已知函数的图象如图所示.(1)求函数的单调递增区间;(2)求函数在上的最大值和最小值;(3)若函数在内恰有781个零点,求实数m、n的值.
滨城高中联盟2024-2025学年度上学期高三期中Ⅰ考试数学参考答案题号1234567891011答案CADBCABDABCCDABD12.12 13. 14.101215.(1)∵,∴,解得;(2)由题意可得,∴,,∴.16.(1),则,由题意可得,解得,即,,令,解得或,故在,上单调递增,在上单调递减,则在处取得极大值1,即,符合题意.(写经检验,当,时,在处取得极大值也给分)∵,,则切点坐标为,切线斜率,∴曲线在点处的切线方程为,即(2)由(1)可得:,,设切点坐标为,切线斜率,则切线方程为,∵切线过点,则,整理得,即或,∴切线方程为或,即或.17.(1)由题意可得,函数的定义域为R,因为是奇函数,所以,可得,经检验,对于,成立,所以.(2)由(1)可得因为,所以,,,,,所以当时的值域,(其他方法求值域酌情给分)又,,设,,则,当时,取最小值为,当时,取最大值为,即在上的值域,又对任意的,总存在,使得成立,即,所以,解得,即实数m的取值范围是.18.(1)∵定义域为,,∴当时,;当时,;∴在上单调递减,在上单调递增,∴的极小值为,无极大值.(2)依题可知,,在上恒成立,显然,所以,设,,,所以在上单调递增,,故,即,即a的最小值为.(3)方法1:由已知,则函数在、上为增函数,若存在实数m、n,其中,使得,则,,由可得,则,故,令,,,可得当时,,此时函数单调递减,当时,,此时函数单调递增,故,,又因为,,且,所以,,因此,的取值范围是.方法2:由已知,则函数在、上为增函数,若存在实数m、n,其中,使得,则,,令,则,可得,由可得,令,其中,令可得,当时,,此时函数单调递减,当时,,此时函数单调递增,故当时,,又因为,,且,所以,,因此,的取值范围是.(其他方法酌情给分)19.(1)由图象可得,最小正周期,则,由,所以,,又,则易求得,所以,由,,得,,所以单调递增区间为,.(2)由题意得,因为,所以,①从而可知,即因此,故在上的最大值为,最小值为0.(3),令,可得,令,得,易知,方程必有两个不同的实数根、,由,则、异号,①当且或者且时,则方程和在区间均有偶数个根,不合题意,舍去;②当且时,则方程和在区间均有偶数个根,不合题意,舍去;③当,时,当时,只有一根,有两根,所以关于x的方程在上有三个根,由于,则方程在上有780个根,由于方程在区间上有两个根,方程在区间上有一个根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿户外游戏安全教育
- 学前教育课程改革回顾与展望
- 2025河南省企业劳动合同样本
- 2025电子产品买卖贸易合同
- 版2025私人借款合同范本汇编
- 2025合同编码准则
- 现代教职工心理健康教育
- 2025年上海市股权转让合同范本
- 2025物流配送合同模板
- 家乡旅游文化节庆策划方案
- 《工程科学与技术》论文投稿模板
- 精美乒乓球运动活动策划方案PPT
- GB/T 18050-2000潜油电泵电缆试验方法
- GB 7793-2010中小学校教室采光和照明卫生标准
- FZ/T 24011-2019羊绒机织围巾、披肩
- 金螳螂企业管理课件
- 炊事机械安全操作规程
- 最新版教育心理学课件3-成就动机
- 离合器-汽车毕业设计-设计说明书
- 中国民间美术年画-完整版PPT
- 2022年《趣味接力跑》教案
评论
0/150
提交评论