




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市肥东中学2025届数学高一上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=x-的图象关于()Ay轴对称 B.原点对称C.直线对称 D.直线对称2.已知向量,,且,那么()A.2 B.-2C.6 D.-63.若实数,满足,则关于的函数图象的大致形状是()A. B.C. D.4.若,且x为第四象限的角,则tanx的值等于A. B.-C. D.-5.已知点,.若过点的直线l与线段相交,则直线的斜率k的取值范围是()A. B.C.或 D.6.函数的最大值为()A. B.C. D.7.定义在上的函数满足,且,,则不等式的解集为()A. B.C. D.8.已知一个直三棱柱的高为2,如图,其底面ABC水平放置的直观图(斜二测画法)为,其中,则此三棱柱的表面积为()A. B.C. D.9.已知函数的上单调递减,则的取值范围是()A. B.C. D.10.以,为基底表示为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若是的充分不必要条件,则的取值范围为______12.若扇形的面积为,半径为1,则扇形的圆心角为___________.13.已知正数x,y满足,则的最小值为_________14.的值__________.15.已知函数为奇函数,则______16.已知函数,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当直线l的倾斜角为45º时,求弦AB的长.18.已知函数且.(1)若函数的图象过点,求的值;(2)当时,若不等式对任意恒成立,求实数的取值范围19.已知圆,直线.(1)若直线与圆交于不同的两点,当时,求的值.(2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点;(3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.20.已知函数,(1)若函数在区间上存在零点,求正实数的取值范围;(2)若,,使得成立,求正实数的取值范围21.已知集合,或,(Ⅰ)求;(Ⅱ)求
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】函数f(x)=x-则f(-x)=-x+=-f(x),由奇函数的定义即可得出结论.【详解】函数f(x)=x-则f(-x)=-x+=-f(x),所以函数f(x)奇函数,所以图象关于原点对称,故选B.【点睛】本题考查了函数的对称性,根据函数解析式特点得出f(-x)=-f(x)即可得出函数为奇函数,属于基础题.2、B【解析】根据向量共线的坐标表示,列出关于m的方程,解得答案.【详解】由向量,,且,可得:,故选:B3、B【解析】利用特殊值和,分别得到的值,利用排除法确定答案.【详解】实数,满足,当时,,得,所以排除选项C、D,当时,,得,所以排除选项A,故选:B.【点睛】本题考查函数图像的识别,属于简单题.4、D【解析】∵x为第四象限的角,,于是,故选D.考点:商数关系5、D【解析】由已知直线恒过定点,如图若与线段相交,则,∵,,∴,故选D.6、C【解析】先利用辅助角公式化简,再由正弦函数的性质即可求解.【详解】,所以当时,取得最大值,故选:C7、B【解析】对变形得到,构造新函数,得到在上单调递减,再对变形为,结合,得到,根据的单调性,得到解集.【详解】,不妨设,故,即,令,则,故在上单调递减,,不等式两边同除以得:,因为,所以,即,根据在上单调递减,故,综上:故选:B8、C【解析】根据斜二测画法的“三变”“三不变”可得底面平面图,然后可解.【详解】由斜二测画法的“三变”“三不变”可得底面平面图如图所示,其中,所以,所以此三棱柱的表面积为.故选:C9、C【解析】利用二次函数的图象与性质得,二次函数f(x)在其对称轴左侧的图象下降,由此得到关于a的不等关系,从而得到实数a的取值范围【详解】当时,,显然适合题意,当时,,解得:,综上:的取值范围是故选:C【点睛】本小题主要考查函数单调性的应用、二次函数的性质、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题10、B【解析】设,利用向量相等可构造方程组,解方程组求得结果.【详解】设则本题正确选项:【点睛】本题考查平面向量基本定理的应用,关键是能够通过向量相等构造出方程组,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据不等式的解法求出的等价条件,结合充分不必要条件的定义建立不等式关系即可【详解】由得得或,由得或,得或,若是的充分不必要条件,则即得,又,则,即实数的取值范围是,故填:【点睛】本题主要考查充分条件和必要条件的应用,求出不等式的等价条件结合充分条件和必要条件的定义进行转化是解决本题的关键,为基础题12、【解析】直接根据扇形的面积公式计算可得答案【详解】设扇形的圆心角为,因为扇形的面积为,半径为1,所以.解得,故答案为:13、8【解析】将等式转化为,再解不等式即可求解【详解】由题意,正实数,由(时等号成立),所以,所以,即,解得(舍),,(取最小值)所以的最小值为.故答案为:14、1【解析】由,结合辅助角公式可知原式为,结合诱导公式以及二倍角公式可求值.【详解】解:.故答案为:1.【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式,考查了辅助角公式,考查了诱导公式.本题的难点是熟练运用公式对所求式子进行变形整理.15、##【解析】利用奇函数的性质进行求解即可.【详解】因为是奇函数,所以有,故答案:16、【解析】根据题意,将分段函数分类讨论计算可得答案【详解】解:当时,,即,解得,满足题意;当时,,即,解得,不满足题意故.故答案为.【点睛】本题考查分段函数的计算,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2x-y-2=0;(2)【解析】(1)由圆的方程可求出圆心,再根据直线过点P、C,由斜率公式求出直线的斜率,由点斜式即可写出直线l的方程;(2)根据点斜式写出直线l的方程,再根据弦长公式即可求出【详解】(1)已知圆C:的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为,直线l的方程为y=2(x-1),即2x-y-2=0(2)当直线l的倾斜角为45º时,斜率为1,直线l的方程为y-2=x-2,即x-y=0.所以圆心C到直线l的距离为因为圆的半径为3,所以,弦AB的长【点睛】本题主要考查直线方程的求法以及圆的弦长公式的应用,意在考查学生的数学运算能力,属于基础题18、(1);(2)﹒【解析】(1)将点代入解析式,即可求出的值;(2)换元法,令,然后利用函数思想求出新函数的最小值即可【小问1详解】由已知得,∴,解得,结合,且,∴;【小问2详解】由已知得,当,时恒成立,令,,且,,,∵在,上单调递增,故,∵是单调递增函数,故,故即为所求,即的范围为19、(1);(2)直线过定点;(3)【解析】(1)利用点到直线的距离公式,结合点到的距离,可求的值;(2)由题意可知:、、、四点共圆且在以为直径的圆上,、在圆上可得直线,的方程,即可求得直线是否过定点;(3)设圆心到直线、的距离分别为,.则,表示出四边形的面积,利用基本不等式,可求四边形的面积最大值【详解】解:(1),点到的距离,(2)由题意可知:、、、四点共圆且在以为直径的圆上,设,其方程为:,即,又、在圆上,即由,得,直线过定点)(3)设圆心到直线、的距离分别为,则,当且仅当即时,取“”四边形的面积的最大值为20、(1)(2)【解析】(1)结合函数的单调性及零点存在定理可得结论;(2)由题意可得在,上,,由函数的单调性求得最值,解不等式可得所求范围【小问1详解】函数,因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 茶顾问聘用合同协议书
- 小区广告合同协议书范本
- 土方填坑合同协议书
- 工程承包事故合同协议书
- 牙齿美容学徒合同协议书
- 简单的员工合同协议书
- 中国工业级甘氨酸项目创业计划书
- 租地种养合同协议书模板
- 经销授权合同协议书模板
- 2025秋五年级语文上册统编版-【8 冀中的地道战】交互课件
- 【MOOC】太阳能电池测试及标准-常熟理工学院 中国大学慕课MOOC答案
- 防汛抢险人员安全培训
- 左肘管综合征的护理查房
- 一例支气管肺炎合并右肺实变患儿的护理查房
- 【MOOC】电子技术实验-北京科技大学 中国大学慕课MOOC答案
- 含两级混合运算(同步练习) 二年级下册数学人教版
- 2024年七月医疗器械质量管理制度
- 2024年高考真题-历史(安徽卷) 含答案
- 2024年湖南省初中学业水平考试地理试卷含答案
- 八年级生物期中模拟卷(考试版A4)(江苏专用苏科版)
- GB/T 32124-2024磷石膏的处理处置规范
评论
0/150
提交评论