2025届江苏省无锡市藕塘中学九上数学开学达标检测试题【含答案】_第1页
2025届江苏省无锡市藕塘中学九上数学开学达标检测试题【含答案】_第2页
2025届江苏省无锡市藕塘中学九上数学开学达标检测试题【含答案】_第3页
2025届江苏省无锡市藕塘中学九上数学开学达标检测试题【含答案】_第4页
2025届江苏省无锡市藕塘中学九上数学开学达标检测试题【含答案】_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届江苏省无锡市藕塘中学九上数学开学达标检测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16- B.-12+ C.8- D.4-2、(4分)下列各点中,与点(-3,4)在同一个反比例函数图像上的点是A.(2,-3) B.(3,4) C.(2,-6) D.(-3,-4)3、(4分)如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A. B. C. D.4、(4分)六边形的内角和为()A.360° B.540° C.720° D.900°5、(4分)如图,直线与分别交x轴于点,,则不等式的解集为()A. B. C. D.或6、(4分)如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣5 D.x<﹣57、(4分)下列调查中,适合采用全面调查(普查)方式的是()A.对巢湖水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.节能灯厂家对一批节能灯管使用寿命的调查D.对某班50名学生视力情况的调查8、(4分)的算术平方根是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为____;若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为_____.10、(4分)因式分解:2x2-1811、(4分)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.12、(4分)在正数范围内定义一种运算“※”,其规则为,如.根据这个规则可得方程的解为__________.13、(4分)当________时,的值最小.三、解答题(本大题共5个小题,共48分)14、(12分)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图):在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现在计划在休息区内摆放占地面积为31.5平方米“背靠背”休闲椅(如图),并要求休闲椅摆放在东西方向上或南北方向上,请通过计算说明休息区内最多能摆放几张这样的休闲椅.15、(8分)如图,ABCD中,的角平分线交AD于点E,的角平分线交于点,,,=50°.(1)求的度数;(2)求ABCD的周长.16、(8分)化简:÷(-a-2),并代入一个你喜欢的值求值.17、(10分)如图,在正方形中,已知于.(1)求证:;(2)若,求的长.18、(10分)感知:如图(1),已知正方形ABCD和等腰直角△EBF,点E在正方形BC边上,点F在AB边的延长线上,∠EBF=90°,连结AE、CF.易证:∠AEB=∠CFB(不需要证明).探究:如图(2),已知正方形ABCD和等腰直角△EBF,点E在正方形ABCD内部,点F在正方形ABCD外部,∠EBF=90°,连结AE、CF.求证:∠AEB=∠CFB应用:如图(3),在(2)的条件下,当A、E、F三点共线时,连结CE,若AE=1,EF=2,则CE=______.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在周长为26cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥AC交AD于E.则△CDE的周长为_____cm.20、(4分)如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b>ax+3的解集为_____.21、(4分)如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为______.22、(4分)如果关于x的一次函数y=mx+(4m﹣2)的图象经过第一、三、四象限,那么m的取值范围是_____.23、(4分)分解因式xy2+4xy+4x=_____.二、解答题(本大题共3个小题,共30分)24、(8分)某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:个数

1

2

3

4

5

6

7

8

9

10

11

人数

1

1

6

18

10

6

2

2

1

1

2

(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?25、(10分)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码1.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.26、(12分)小倩和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴;只知道游乐园D的坐标为(2,﹣2).(1)画出平面直角坐标系;(2)求出其他各景点的坐标.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【详解】∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为cm,cm,∴AB=4cm,BC=cm,∴空白部分的面积=×4−12−16=+16−12−16=cm2.故选B.此题考查二次根式的应用,解题关键在于将正方形面积直接开根即是正方形的边长.2、C【解析】

先根据反比例函数中k=xy的特点求出k的值,再对各选项进行逐一检验即可.【详解】∵反比例函数y=kx过点(−3,4),∴k=(−3)×4=−12,A.∵2×3=6≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;B.∵3×4=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误;C.∵2×-6=−12,∴此点与点(−3,4)在同一个反比例函数图象上,故本选项正确;D.∵(−3)×(−4)=12≠−12,∴此点不与点(−3,4)在同一个反比例函数图象上,故本选项错误。故选C.此题考查反比例函数图象上点的坐标特征,解题关键在于求出k的值3、B【解析】

根据矩形的性质,得△EBO≌△FDO,再由△AOB与△ABC同底且△AOB的高是△ABC高的得出结论.【详解】解:∵四边形为矩形,∴OB=OD=OA=OC,在△EBO与△FDO中,∵∠EOB=∠DOF,OB=OD,∠EBO=∠FDO,∴△EBO≌△FDO(ASA),∴阴影部分的面积=S△AEO+S△EBO=S△AOB,∵△AOB与△ABC同底且△AOB的高是△ABC高的,∴S△AOB=S△ABC=S矩形ABCD.故选B.本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质4、C【解析】

根据多边形内角和公式(n-2)×180º计算即可.【详解】根据多边形的内角和可得:(6﹣2)×180°=720°.故选C.本题考查了多边形内角和的计算,熟记多边形内角和公式是解答本题的关键.5、D【解析】

把,转化为不等式组①或②,然后看两个函数的图象即可得到结论.【详解】∵∴①或②∵直线与分别交x轴于点,观察图象可知①的解集为:,②的解集为:∴不等式的解集为或.故选D.本题主要考查一次函数和一元一次不等式,学会根据图形判断函数值的正负是关键.6、A【解析】

函数y1=3x+b和y1=ax﹣3的图象交于点P(﹣1,﹣5),求不等式3x+b>ax﹣3的解集,就是看函数在什么范围内y1=3x+b的图像在函数y1=ax﹣3的图象上面,据此进一步求解即可.【详解】从图像得到,当x>﹣1时,y1=3x+b的图像对应的点在函数y1=ax﹣3的图像上面,∴不等式3x+b>ax﹣3的解集为:x>﹣1.故选:A.本题主要考查了一次函数与不等式的综合运用,熟练掌握相关方法是解题关键.7、D【解析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】、对巢湖水质情况的调查适合抽样调查,故选项错误;、对端午节期间市场上粽子质量情况的调查适合抽样调查,故选项错误;、节能灯厂家对一批节能灯管使用寿命的调查适合抽样调查,故选项错误;、对某班50名学生视力情况的调查,适合全面调查,故选项正确.故选:.本题考查了抽样调查和全面调查的区别,选择普遍还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、B【解析】

根据算术平方根的概念求解即可.【详解】解:4的算术平方根是2,故选B.本题考查了算术平方根的概念,属于基础题型,熟练掌握算术平方根的定义是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、(1,1)(-1,-1).【解析】

根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点旋转后的坐标.【详解】∵菱形OABC的顶点O(0,0),B(2,2),得∴D点坐标为(1,1).∵每秒旋转45°,∴第60秒旋转45°×60=2700°,2700°÷360°=7.5周,即OD旋转了7周半,∴菱形的对角线交点D的坐标为(-1,-1),故答案为:(1,1);(-1,-1)本题考查了旋转的性质及菱形的性质,利用旋转的性质得出OD旋转的周数是解题关键.10、2(x+3)(x﹣3).【解析】试题分析:先提公因式2后,再利用平方差公式分解即可,即2x2-18考点:因式分解.11、【解析】

根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度【详解】∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm.故答案为:cm.此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.12、【解析】

运算“※”的意思是两数的倒数之和.由于是在正数范围内,所以-2可看作※后面的x的系数,根据新定义列出式子计算即可.【详解】∵,

∴,去分母得:,解得:经检验是原方程的解.故答案为.本题除了定义运算外,还考查简单的分式方程的解法.13、【解析】

根据二次根式的意义和性质可得答案.【详解】解:由二次根式的性质可知,当时,取得最小值0故答案为:2本题考查二次根式的“双重非负性”即“根式内的数或式大于等于零”和“根式的计算结果大于等于零”三、解答题(本大题共5个小题,共48分)14、休息区只能摆放张这样的休闲椅.【解析】

先根据正方形的空地面积求出正方形空地的边长,根据儿童游乐场的面积求出儿童游乐场的边长,即可得出休息区东西向和南北向的边长,已知休闲椅的长和宽,利用无理数估算大小的方法,即可知休息区只能摆放几张这样的休闲椅.【详解】如图3:由题得,正方形空地的边长为(米)儿童游乐场的边长为(米)∵(米)∴休息区东西向和南北向的边长分别为米,米∵∴∴休闲椅只能东西方向摆放,且只能摆放一排∵∴∴休闲椅在东西方向上可并列摆放张综上所述,休息区只能摆放张这样的休闲椅本题考查了正方形的性质,已知面积可求得边长,题中应用了无理数大小的估算,要想准确的估算出无理数的取值范围需要记住一些常用数的平方,一般情况下从1到20整数的平方都应牢记.15、(1);(2)1.【解析】

(1)根据平行四边形的对角相等得出∠ADC=∠ABC=50°,再根据角平分线定义即可求出∠FDC的度数;

(2)根据平行四边形的对边平行得出AE∥BC,利用平行线的性质以及角平分线定义得出∠ABE=∠AEB,由等角对等边得出AE=AB=5,那么AD=AE+DE=8,进而得到▱ABCD的周长.【详解】解:(1)∵▱ABCD中,∠ABC=50°,

∴∠ADC=∠ABC=50°,

∵DF平分∠ADC,(2)四边形ABCD是平行四边形,

∴AE∥BC,

∴∠AEB=∠CBE,

∵BE平分∠ABC,

∴∠ABE=∠CBE,

∴∠ABE=∠AEB,

∴AE=AB=5,

∵DE=3,

∴AD=AE+DE=8,

∴▱ABCD的周长=2(AB+AD)=2(5+8)=1.本题考查了平行四边形的性质,角平分线定义,等腰三角形的判定与性质,难度适中.16、,.【解析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,最后将除法改成乘法进行约分化简,最后选择a的值时,不能取a=2和a=±1.详解:原式=,当a=1时,原式=.点睛:本题主要考查的是分式的化简求值问题,属于基础题型.学会因式分解是解决分式问题的基本要求.17、(1)见解析;(2)【解析】

(1)由正方形的性质可得BC=CD,∠B=∠BCD=90°,利用直角三角形中两个锐角互余以及垂直的定义证明∠BEC=∠CFD即可证明:△BCE≌△CDF;(2)由(1)可知:△BCE≌△CDF,所以CF=BE=2,由相似三角形的判定方法可知:△BCE∽HCF,利用相似三角形的性质:对应边的比值相等即可求出HF的长.【详解】(1)证明:在正方形中,∴,∵,∴,又∵,∴,∴;(2)解:∵∴,∵,∴,∴,在Rt△BCE中,BC=AB=6,BE=2,∴,∴;本题考查了正方形的性质、相似三角形的判定和性质以及全等三角形的判定和性质,题目的综合性很强,但难度不大.18、感知:见解析;探究:见解析;应用:.【解析】

感知:先判断出∠ABC=∠CBF=90°,AB=BC,进而判断出BE=BF,得出△ABE≌△CBF(SAS)即可得出结论;探究:先判断出∠ABE=∠CBF,进而得出△ABE≌△CBF(SAS),即可得出结论;应用:先求出CF=1,再判断出∠CFE=90°,利用勾股定理即可得出结论.【详解】解:感知:∵四边形ABCD是正方形,∴∠ABC=∠CBF=90°,AB=BC,∵△BEF是等腰直角三角形,∴BE=BF,∴△ABE≌△CBF(SAS),∴∠AEB=∠CFB;探究:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°=∠ABC,∴∠ABE=∠CBF,∴△ABE≌△CBF(SAS),∴∠AEB=∠CFB;应用:由(2)知,△ABE≌△CBF,∠BFC=∠BEA,∴CF=AE=1,∵△BEF是等腰直角三角形,∴∠BFE=∠BEF=45°,∴∠AEB=135°,∴∠BFC=135°,∴∠CFE=∠BFC-∠BFE=90°,在Rt△CFE中,CF=1,EF=2,根据勾股定理得,,故答案为:.此题是四边形综合题,主要考查了正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出△ABE≌△CBF(SAS),是解本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、13.【解析】

利用垂直平分线性质得到AE=EC,△CDE的周长为ED+DC+EC=AE+ED+DC,为平行四边形周长的一半,故得到答案【详解】利用平行四边形性质得到O为AC中点,又有OE⊥AC,所以EO为AC的垂直平分线,故AE=EC,所以△CDE的周长为ED+DC+EC=AE+ED+DC=AD+CD,即为平行四边形周长的一半,得到△CDE周长为26÷2=13cm,故填13本题主要考查垂直平分性性质,平行四边形性质等知识点,本题关键在于能够找到OE为垂直平分线20、x>1【解析】试题分析:根据两直线的图象以及两直线的交点坐标来进行判断.试题解析:由图知:当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;由于两直线的交点横坐标为:x=1,观察图象可知,当x>1时,x+b>ax+3;考点:一次函数与一元一次不等式.21、x>-1.【解析】

结合函数的图象利用数形结合的方法确定不等式的解集即可.【详解】观察图象知:当x>-1时,kx+b>4,故答案为x>-1.考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.22、0<m<【解析】

根据已知,图象经过第一、三、四象限,容易画出直线的草图,再根据直线的上升或下降趋势,以及与y轴的交点位置,即可判断x的取值范围.【详解】∵关于x的一次函数y=mx+(4m﹣2)的图象经过第一、三、四象限,∴,∴0<m<.故答案为:0<m<;该题结合不等式组重点考查了一次函数的性质,即y=kx+b中k和b的意义,k决定了函数的增减性,即图像从左到右是上升还是下降,b决定了函数与y轴交点的位置,因此熟练掌握相关的知识点,该题就很容易解决.23、x(y+2)2【解析】

原式先提取x,再利用完全平方公式分解即可。【详解】解:原式=,故答案为:x(y+2)2此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.二、解答题(本大题共3个小题,共30分)24、(1)中位数为4个,众数为4个,平均数为5个(2)中位数或众数,理由见解析(3)25200人【解析】

试题分析:(1)根据出现最多的是众数;把这组数据按大小关系排列,中间位置的是中位数(偶数个数据取中间两个数的平均值);平均数是总成绩除以总人数;(2)根据中位数或众数比较接近大部分学生成绩,故中位数或众数作为合格标准次数较为合适;(3)根据50人中,有42人符合标准,进而求出3万名该市九年级男生引体向上项目测试的合格人数即可.试题解析:(1)平均数为(1×1+1×2+6×3+18×4+10×5+6×6+2×7+2×8+1×9+1×10+2×11)÷50=5个;众数为4个,中位数为4个.(2)用中位数或众数(4个)作为合格标准次数较为合适,因为4个大部分同学都能达到.(3)(人).故估计该市九

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论