2025届南省郴州市九年级数学第一学期开学经典试题【含答案】_第1页
2025届南省郴州市九年级数学第一学期开学经典试题【含答案】_第2页
2025届南省郴州市九年级数学第一学期开学经典试题【含答案】_第3页
2025届南省郴州市九年级数学第一学期开学经典试题【含答案】_第4页
2025届南省郴州市九年级数学第一学期开学经典试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届南省郴州市九年级数学第一学期开学经典试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)用配方法解方程x2+3x+1=0,经过配方,得到()A.(x+)2= B.(x+)2=C.(x+3)2=10 D.(x+3)2=82、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<1;②a>1;③当x<4时,y1<y2;④b<1.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个3、(4分)已知点(-4,y1),(2,y2)都在直线y=-x+2上,则y1y2大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能比较4、(4分)如图,直线y=x+b与直线y=kx+b交于点P(3,5),则关于x的不等式x+b>kx+6的解集是()A.x>3 B.x<3 C.x≥3 D.x≤35、(4分)如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB,AC于点D,E,则下列结论正确的是()A.AE=3CE B.AE=2CE C.AE=BD D.BC=2CE6、(4分)如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.77、(4分)下列计算中,正确的是A. B. C. D.8、(4分)如图,在△ABC中,点D,E,F分别是AB,BC,AC的中点,连接DE,EF,DF,则下列说法不正确的是()A.S△DEF=S△ABCB.△DEF≌△FAD≌△EDB≌△CFEC.四边形ADEF,四边形DBEF,四边形DECF都是平行四边形D.四边形ADEF的周长=四边形DBEF的周长=四边形DECF的周长二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)直角中,,、、分别为、、的中点,已知,则________.10、(4分)若m2﹣n2=6,且m﹣n=2,则m+n=_________11、(4分)在菱形ABCD中,,,则对角线AC的长为________.12、(4分)如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为___.13、(4分)如图,在▱ABCD中,M为边CD上一点,将△ADM沿AM折叠至△AD′M处,AD′与CM交于点N.若∠B=55°,∠DAM=24°,则∠NMD′的大小为___度.三、解答题(本大题共5个小题,共48分)14、(12分)如图,过点A的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式;(2)若该一次函数的图象与x轴交于点D,求△BOD的面积.15、(8分)(1)先化简代数式.求:当时代数式值.(2)解方程:.16、(8分)已知:如图,在等边三角形中,点,分别在边和上,且.以为边作等边三角形,连接,,.(1)你能在图中找到一对全等三角形吗?请说明理由;(2)图中哪个三角形可以通过旋转得到另一个三角形?请说明是怎样旋转的.17、(10分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.72.13.12.35.22.87.34.34.86.74.55.16.58.92.24.53.23.24.53.53.53.53.64.93.73.85.65.55.96.25.73.94.04.07.03.79.54.26.43.54.54.54.65.45.66.65.84.56.27.5(1)把上面的频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可)(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?18、(10分)如图,直线y=x+1与x,y轴交于点A,B,直线y=-2x+4与x,y轴交于点D,C,这两条直线交于点E.(1)求E点坐标;(2)若P为直线CD上一点,当△ADP的面积为9时,求P的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.20、(4分)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为___.21、(4分)如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是______22、(4分)如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为.23、(4分)如图,正方形ABCD的边长为4,E为BC上的点,BE=1,F为AB的中点,P为AC上一个动点,则PF+PE的最小值为_____.二、解答题(本大题共3个小题,共30分)24、(8分)某商场推出两种优惠方法,甲种方法:购买一个书包赠送一支笔;乙种方法:购买书包和笔一律按九折优惠,书包20元/个,笔5元/支,小明和同学需购买4个书包,笔若干(不少于4支).(1)分别写出两种方式购买的费用y(元)与所买笔支数x(支)之间的函数关系式;(2)比较购买同样多的笔时,哪种方式更便宜;(3)如果商场允许可以任意选择一种优惠方式,也可以同时用两种方式购买,请你就购买4个书包12支笔,设计一种最省钱的购买方式.25、(10分)如图,在中,分别是的平分线.求证:四边形是平行四边形.26、(12分)如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

把常数项1移项后,在左右两边同时加上一次项系数3的一半的平方,由此即可求得答案.【详解】∵x2+3x+1=0,∴x2+3x=﹣1,∴x2+3x+()2=﹣1+()2,即(x+)2=,故选B.本题考查了解一元二次方程--配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.2、D【解析】

根据一次函数的性质对①②④进行判断;当x<4时,根据两函数图象的位置对③进行判断.【详解】解:根据图象y1=kx+b经过第一、二、四象限,∴k<1,b>1,故①正确,④错误;∵y2=x+a与y轴负半轴相交,∴a<1,故②错误;当x<4时图象y1在y2的上方,所以y1>y2,故③错误.所以正确的有①共1个.故选D.此题主要考查了一次函数,以及一次函数与不等式,根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.3、A【解析】

根据一次函数的图象和性质,即可得到答案.【详解】∵y=-x+2,∴k=-<0,即y随着x的增大而减小,∵点(-4,y1),(2,y2)在直线y=-x+2上,∴y1>y2故选A.本题主要考查一次函数的性质,理解一次函数的比例系数k的意义,是解题的关键.4、A【解析】

利用函数图象,写出直线y=x+b在直线y=kx+1上方所对应的自变量的范围即可.【详解】根据图象得当x>3时,x+b>kx+1.故选:A.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.5、B【解析】

连接BE,根据中垂线的性质可得:BE=AE,∠ABE=∠A=30°,根据直角三角形的性质可得:∠EBC=30°,CE=BE,即AE=BE=2CE.【详解】连接BE,根据中垂线的性质可得:BE=AE;∴∠ABE=∠A=30°;又∵在中,∠EBC=30°;∴CE=BE,即AE=BE=2CE.故选B.本题主要考查了中垂线的性质和直角三角形的性质,掌握中垂线的性质和直角三角形的性质是解题的关键.6、C【解析】

观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【详解】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,,解得:,∴y=10x(0≤x≤2);当x>2时,将(2,20),(4,36)代入y=kx+b中,,解得:,∴y=8x+4(x≥2).当x=1时,y=10x=10,当x=5时,y=44,10×5-44=6(元),故选C.本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.7、D【解析】

根据合并同类项法则、同底数幂除法、积的乘方对各选项分析判断后利用排除法求解.【详解】A.应为x3+x3=2x3,故本选项错误;B.应为a6÷a2=a6﹣2=a4,故本选项错误;C.3a与5b不是同类项,不能合并,故本选项错误;D.(﹣ab)3=﹣a3b3,正确.故选D.本题考查了合并同类项,同底数幂的除法,积的乘方的性质,熟练掌握运算性质并灵活运用是解题的关键,不是同类项的一定不能合并.8、D【解析】

根据中位线定理可证DE∥AC,DF∥BC,EF∥AB,即可得四边形ADEF,四边形DECF,四边形BDFE是平行四边形.即可判断各选项是否正确.【详解】连接DF∵点D,E,F分别是AB,BC,AC的中点∴DE∥AC,DF∥BC,EF∥AB∴四边形ADEF,四边形DECF,四边形BDFE是平行四边形∴△ADF≌△DEF,△BDE≌△DEF,△CEF≌△DEF∴△DEF≌△ADF≌△BDE≌△CEF∴S△ADF=S△BDE=S△DEF=S△CEF.∴S△DEF=S△ABC.故①②③说法正确∵四边形ADEF的周长为2(AD+DE)四边形BDFE的周长为2(BD+DF)且AD=BD,DE≠DF,∴四边形ADEF的周长≠四边形BDFE的周长故④说法错误故选:D.本题考查了平行四边形的判定,三角形中位线定理,平行四边形的性质,熟练运用中位线定理解决问题是本题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、3【解析】

由三角形中位线定理得到DF=BC;然后根据直角三角形斜边上的中线等于斜边的一半得到AE=BC,则DF=AE.【详解】∵在直角△ABC中,∠BAC=90°,D.

F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE=3.故答案为3.本题考查了三角形中位线定理和直角三角形斜边上的中线.熟记定理是解题的关键.10、3【解析】

利用平方差公式得到(m+n)(m-n)=6,然后把m-n=2代入计算即可.【详解】∵,∴m+n=3.11、1【解析】

由菱形的性质可得AB=BC=1,∠DAB+∠ABC=180°,可得∠ABC=10°,可证△ABC是等边三角形,可得AC=1.【详解】如图,∵四边形ABCD是菱形∴AB=BC=1,∠DAB+∠ABC=180°∴∠ABC=10°,且AB=BC∴△ABC是等边三角形∴AC=AB=1故答案为:1本题考查了菱形的性质,等边三角形的判定和性质,熟练运用菱形的性质是本题的关键.12、【解析】

根据平行四边形的性质及两点之间线段最短进行作答.【详解】由题知,四边形ABCD是平行四边形,所以BH=DH.要求HD+HE最小,即BH+HE最小,所以,连接B、E,得到最小值HD+HE=BE.过B点作BGCE交于点G,再结合题意,得到GE=3,BG=1,由勾股定理得,BE=.所以,HD+HE最小值为.本题考查了平行四边形的性质及两点之间线段最短,熟练掌握平行四边形的性质及两点之间线段最短是本题解题关键.13、22.【解析】

由平行四边形的性质得出∠D=∠B=55°,由折叠的性质得:∠D'=∠D=55°,∠MAD'=∠DAM=24°,由三角形的外角性质求出∠AMN=79°,与三角形内角和定理求出∠AMD'=101°,即可得出∠NMD'的大小.【详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=55°,由折叠的性质得:∠D'=∠D=55°,∠MAD'=∠DAM=24°,∴∠AMN=∠D+∠DAM=55°+24°=79°,∠AMD'=180°-∠MAD'-∠D'=101°,∴∠NMD'=101°-79°=22°;故答案为:22.本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AMN和∠AMD'是解决问题的关键.三、解答题(本大题共5个小题,共48分)14、(1)y=﹣x+1;(2)△BOD的面积=1.【解析】

(1)先根据直线的方向判定一次函数解析式中k的符号,再根据直线经过点B(1,1),判断函数解析式即可;(2)求出D点的坐标,根据三角形的面积公式即可得到结论.【详解】把x=1代入y=2x得y=2∴直线经过点B(1,2)设直线AB的解析式为:y=kx+b∴∴∴该一次函数的解析式为y=﹣x+1;(2)当y=0时,x=1∴D(1,0)∴OD=1∴△BOD的面积=×1×2=1.本题主要考查了两直线相交或平行问题,解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.15、(1)2;(2).【解析】

(1)把括号内通分化简,再把除法转化为乘法约分,然后把代入计算即可;(2)两边都乘以x-2,化为整式方程求解,求出x的值后检验.【详解】(1)原式=====,当时,原式=;(2),两边都乘以x-2,得3=2(x-2)-x,解之得x=7,检验:当x=7时,x-2≠0,所以x=7是原方程的解.本题考查了分式的化简求值,以及分式方程的解法,熟练掌握分式的运算法则及分式方程的求解步骤是解答本题的关键.16、(1),见详解;(2)绕点顺时针旋转得到,见详解【解析】

(1)根据三角形全等的判定即可得到答案;(2)在全等的三角形中根据旋转的定义即可得到答案.【详解】解:.证明:,为等边三角形,在和中(2)绕点顺时针旋转得到.本题考查旋转的性质,等边三角形的性质,三角形全等的判定,认真观察图形找到全等的三角形是解决问题的关键.17、(1)见解析;(2)答案不唯一;(3)我觉得家庭月均用水量应该定为5吨【解析】

(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与

6.5<x≤8.0

的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;(2)从直方图可以看出:居民月平均用水量大部分在2.0至6.5之间;居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.(3)根据共有50个家庭,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨,即可得出答案.【详解】(1)(1)5.0<x≤6.5共有13个,则频数是13,6.5<x≤8.0共有5个,则频数是5,填表如下:分组划记频数2.0<x≤3.5正正一113.5<x≤5.0195.0<x≤6.5136.5<x≤8.0正58.0<x≤9.52合计50如图:(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;③居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.(3)因为在2.0至5.0之间的用户数为11+19=30,而30÷50=0.6,所以要使60%的家庭收费不受影响,我觉得家庭月均用水量应该定为5吨.本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18、(1)点E的坐标为(1,2);(2)点P的坐标为(-1,6)或(5,-6).【解析】

(1)把y=x+1与y=-2x+4联立组成方程组,解方程组求得x、y的值,即可求得点E的坐标;(2)先求得点A的坐标为(-1,0)、点D的坐标为(2,0),可得AD=3,根据△ADP的面积为9求得△ADP边AD上的高为6,可得点P的纵坐标为6,再分当点P在y轴的上方时和当点P在y轴的下方时两种情况求点P的坐标即可.【详解】(1)由题意得,,解得,,∴点E的坐标为(1,2);(2)∵直线y=x+1与x交于点A,直线y=-2x+4与x交于点D,∴A(-1,0),D(2,0),∴AD=3,∵△ADP的面积为9,∴△ADP边AD上的高为6,∴点P的纵坐标为6,当点P在y轴的上方时,-2x+4=6,解得x=-1,∴P(-1,6);当点P在y轴的下方时,-2x+4=-6,解得x=5,∴P(5,-6);综上,当△ADP的面积为9时,点P的坐标为(-1,6)或(5,-6).本题考查了两直线的交点问题,熟知两条直线的交点坐标是这两条直线相对应的一次函数表达式所组成的二元一次方程组的解是解决问题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、x=-1【解析】

观察图象,根据图象与x轴的交点解答即可.【详解】∵一次函数y=kx+1的图象与x轴的交点坐标是(-1,0),∴kx+1=0的解是x=-1.故答案为:x=-1.本题考查了一次函数与一元一次方程,解题的关键是根据交点坐标得出kx+1=0.20、2【解析】

根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.【详解】解:在Rt△BCE中,由勾股定理得,CE===1.∵BE=DE=3,AE=CE=1,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC×BD=4×(3+3)=2.故答案为2.本题考查了平行四边形的判定与性质,关键是利用勾股定理得出CE的长,利用对角线互相平分的四边形是平行四边形,利用平行四边形的面积公式.21、x>1【解析】分析:根据两直线的交点坐标和函数的图象即可求出答案.详解:∵直线y1=kx+b与直线y2=mx交于点P(1,m),

∴不等式mx>kx+b的解集是x>1,

故答案为x>1.点睛:解答本题的关键是熟练掌握图象在上方的部分对应的函数值大,图象在下方的部分对应的函数值小.22、x<.【解析】

先把点A(m,3)代入函数y=2x求出m的值,再根据函数图象即可直接得出结论.【详解】∵点A(m,3)在函数y=2x的图象上,∴3=2m,解得m=,∴A(,3),由函数图象可知,当x<时,函数y=2x的图象在函数y=ax+5图象的下方,∴不等式2x<ax+5的解集为:x<.23、【解析】

先根据正方形的性质和轴对称的性质找出使PF+PE取得最小值的点,然后根据勾股定理求解即可.【详解】∵正方形ABCD是轴对称图形,AC是一条对称轴,∴点F关于AC的对称点在线段AD上,设为点G,连结EG与AC交于点P,则PF+PE的最小值为EG的长,∵AB=4,AF=2,∴AG=AF=2,∴EG=.故答案为.本题考查了正方形的性质,轴对称之最短路径问题及勾股定理,根据轴对称的性质确定出点P的位置是解答本题的关键.二、解答题(本大题共3个小题,共30分)24、(1)y甲=5x+60,y乙=4.5x+72;(2)当购买笔数大于24支时,乙种方式便宜;当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以;当购买笔数大于4支而小于24支时,甲种方式便宜;(3)用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.【解析】分析:(1)根据购买的费用等于书包的费用+笔的费用就可以得出结论;(2)由(1)的解析式,分情y甲>y乙时,况y甲=y乙时和y甲<y乙时分别建立不等式和方程讨论就可以求出结论;(3)由条件分析可以得出用一种方式购买选择甲商场求出费用,若两种方法都用设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用为y,再根据一次函数的性质就可以求出结论.详解:(1)由题意,得:y甲=20×4+5(x﹣4)=5x+60,y乙=90%(20×4+5x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论