




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第04讲平面向量一、单选题1.(2021·中山市第二中学高一月考)我国东汉末数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若,则()A. B. C. D.2.(2021·徐汇·上海中学)2021年第十届中国花卉博览会兴办在即,其中,以“蝶恋花”为造型的世纪馆引人貝目(如图①),而美妙的蝴蝶轮变不仅带来生活中的赏心悦目,也展示了极致的数学美学世界.数学家曾借助三角函数得到了蝴蝶曲线的图像,探究如下:如图②,平面上有两定点,,两动点,,且,绕点逆时针旋转到所形成的角记为.设函数,,其中,,令,作随着的变化,就得到了的轨迹,其形似“蝴蝶”.则以下4幅图中,点的轨迹(考虑糊蝶的朝向)最有可能为()A. B. C. D.3.(2022·全国高三专题练习)2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割.所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比,黄金分割比为.其实有关“黄金分割”,我国也有记载,虽然没有古希腊的早,但它是我国古代数学家独立创造的.如图,在矩形ABCD中,AC,BD相交于点O,BF⊥AC,DH⊥AC,AE⊥BD,CG⊥BD,,则()A. B.C. D.4.(2021·江苏南通·高三)瑞典人科赫提出了著名的“雪花”曲线,这是一种分形曲线,它的分形过程是:从一个正三角形(如图①)开始,把每条边分成三等份,以各边的中间部分的长度为底边,分别向外作正三角形后,抹掉“底边”线段,这样就得到一个六角形(如图②),所得六角形共有12条边.再把每条边分成三等份,以各边的中间部分的长度为底边,分别向外作正三角形后,抹掉“底边”线段.反复进行这一分形,就会得到一个“雪花”样子的曲线,这样的曲线叫作科赫曲线或“雪花”曲线.已知点O是六角形的对称中心,A,B是六角形的两个顶点,动点P在六角形上(内部以及边界).若,则的取值范围是()A. B. C. D.5.(2021·全国(理))下面图1是某晶体的阴阳离子单层排列的平面示意图.其阴离子排列如图2所示,图2中圆的半径均为,且相邻的圆都相切,、、、是其中四个圆的圆心,则().A.B.C.D.6.(2021·广东)八卦是中国文化的基本哲学概念,图1是八卦模型图,其平面图形为图2所示的正八边形,其中,给出下列结论:图1图2①与的夹角为;②;③;④在上的投影向量为(其中为与同向的单位向量).其中正确结论为()A.① B.② C.③ D.④7.(2021·江苏省前黄高级中学)窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一.每年新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图一是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图二中正六边形的边长为,圆的圆心为正六边形的中心,半径为,若点在正六边形的边上运动,为圆的直径,则的取值范围是()A. B. C. D.8.(2021·福清西山学校高一月考)“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形中,满足“勾3股4弦5”,且,为上一点,.若,则的值为()A. B. C. D.1二、多选题9.(2021·重庆北碚·西南大学附中高一期末)奔驰定理:已知是内的一点,,,的面积分别为,,,则.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedesbenz)的logo很相似,故形象地称其为“奔驰定理”.若、是锐角内的点,、、是的三个内角,且满足,,则()A.B.C.D.10.(2021·邯山区新思路学本文化辅导学校高一期中)我国汉代数学家赵爽为了证明勾股定理,创制了一副“勾股圆方图”,后人称其为“赵爽弦图”.如图,大正方形由四个全等的直角三角形与一个小正方形拼成,其中小正方形的边长为1,E为的中点,则()A. B. C. D.11.(2021·湖北高一期中)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知的外心为,垂心为,重心为,且,,则下列说法正确的是()A. B.C. D.12.(2021·沛县教师发展中心)定义平面向量之间的一种运算“⊙”如下:对任意的,,令,下面说法正确的是()A.若与共线,则=0B.=C.对任意的λ∈R,有()⊙=()D.()2+()2=||2||2三、填空题13.(2021·江苏常州·)笛卡尔坐标系是直角坐标系与斜角坐标系的统称,如图,在平面斜角坐标系中,两坐标轴的正半轴的夹角为,,分别是与轴,轴正方向同向的单位向量,若向量,则称有序实数对为在该斜角坐标系下的坐标.若向量,在该斜角坐标系下的坐标分别为,,当_______时,.14.(2021·全国高三(文))定义向量列从第二项开始,每一项与它的前一项的差都等于同一个常向量(即坐标都是常数的向量)即,且,其中为常向量,则称这个向量列为等差向量列.这个常向量叫做等差向量列的公差向量,且向量列的前项和.已知等差向量列满足,,则向量列的前项和__________.15.(2021·江苏省梅村高级中学高一月考)赵爽是我国古代数学家大约在公元222年,他为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成)类比“赵爽弦图”,可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设,若,则可以推出_________.16.(2020·全国高三)根据《周髀算经》记载,公元前十一世纪,数学家商高就提出“勾三股四弦五”,故勾股定理在中国又称商高定理.而勾股数是指满足勾股定理的正整数组,任意一组勾股数都可以表示为如下的形式:其中,,均为正整数,且.如图所示,中,,,三边对应的勾股数中,,点在线段上,且,则______.第04讲平面向量一、单选题1.(2021·中山市第二中学高一月考)我国东汉末数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若,则()A. B. C. D.【答案】B【分析】利用平面向量的线性运算及平面向量的基本定理求解即可.【详解】,即,解得,即.故选:B.2.(2021·徐汇·上海中学)2021年第十届中国花卉博览会兴办在即,其中,以“蝶恋花”为造型的世纪馆引人貝目(如图①),而美妙的蝴蝶轮变不仅带来生活中的赏心悦目,也展示了极致的数学美学世界.数学家曾借助三角函数得到了蝴蝶曲线的图像,探究如下:如图②,平面上有两定点,,两动点,,且,绕点逆时针旋转到所形成的角记为.设函数,,其中,,令,作随着的变化,就得到了的轨迹,其形似“蝴蝶”.则以下4幅图中,点的轨迹(考虑糊蝶的朝向)最有可能为()A. B. C. D.【答案】B【分析】考虑特殊值,用排除法,取,确定的的位置,排除错误选项得结论.【详解】先考虑与共线的蝴蝶身方向,令,,要满足,故排除A,C;再考虑与垂直的方向,令,要满足,故排除D,故选:B.3.(2022·全国高三专题练习)2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割.所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比,黄金分割比为.其实有关“黄金分割”,我国也有记载,虽然没有古希腊的早,但它是我国古代数学家独立创造的.如图,在矩形ABCD中,AC,BD相交于点O,BF⊥AC,DH⊥AC,AE⊥BD,CG⊥BD,,则()A. B.C. D.【答案】D【分析】由黄金分割比可得,结合矩形的特征可用表示出,再利用向量加减法法则及数乘向量运算法则即可作答.【详解】在矩形ABCD中,由已知条件得O是线段EG中点,,因,由黄金分割比可得,于是得,即有,同理有,而,即,从而有,所以.故选:D4.(2021·江苏南通·高三)瑞典人科赫提出了著名的“雪花”曲线,这是一种分形曲线,它的分形过程是:从一个正三角形(如图①)开始,把每条边分成三等份,以各边的中间部分的长度为底边,分别向外作正三角形后,抹掉“底边”线段,这样就得到一个六角形(如图②),所得六角形共有12条边.再把每条边分成三等份,以各边的中间部分的长度为底边,分别向外作正三角形后,抹掉“底边”线段.反复进行这一分形,就会得到一个“雪花”样子的曲线,这样的曲线叫作科赫曲线或“雪花”曲线.已知点O是六角形的对称中心,A,B是六角形的两个顶点,动点P在六角形上(内部以及边界).若,则的取值范围是()A. B. C. D.【答案】C【分析】设,,求的最大值,只需考虑图中以O为起点,6个顶点分别为终点的向量即可,再根据对称可得最小值.【详解】如图,设,,求的最大值,只需考虑图中以O为起点,6个顶点分别为终点的向量即可,讨论如下:当点P在A处时,,,故;当点P在B处时,,,故;当点P在C处时,,故;当点P在D处时,,故;当点P在E处时,,故;当点P在F处时,,故.于是的最大值为5.根据其对称性可知的最小值为,故的取值范围是.故选:C.【点睛】关键点睛:解决本题的关键是根据题意得出只需考虑图中以O为起点,6个顶点分别为终点的向量即可.5.(2021·全国(理))下面图1是某晶体的阴阳离子单层排列的平面示意图.其阴离子排列如图2所示,图2中圆的半径均为,且相邻的圆都相切,、、、是其中四个圆的圆心,则().A.B.C.D.【答案】B【分析】如图所示,取、为一组基底的基向量,其中且、的夹角为60°,将和化为基向量,利用平面向量的数量积的运算律可得结果.【详解】如图所示,建立以、为一组基底的基向量,其中且、的夹角为60°,∴,,∴.故选:B.6.(2021·广东)八卦是中国文化的基本哲学概念,图1是八卦模型图,其平面图形为图2所示的正八边形,其中,给出下列结论:图1图2①与的夹角为;②;③;④在上的投影向量为(其中为与同向的单位向量).其中正确结论为()A.① B.② C.③ D.④【答案】C【分析】根据图形的特征进行判断即可.【详解】由图:正八边形,因为与的夹角为,故①错误;因为,故②错误;因为,故③正确;因为在上的投影向量与向量反向,故④错误;故选:C【点睛】本题主要考查向量的加减法及向量的投影向量等,属于简单题.7.(2021·江苏省前黄高级中学)窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一.每年新春佳节,我国许多地区的人们都有贴窗花的习俗,以此达到装点环境、渲染气氛的目的,并寄托着辞旧迎新、接福纳祥的愿望.图一是一张由卷曲纹和回纹构成的正六边形剪纸窗花,已知图二中正六边形的边长为,圆的圆心为正六边形的中心,半径为,若点在正六边形的边上运动,为圆的直径,则的取值范围是()A. B. C. D.【答案】C【分析】计算得出,求出的取值范围,由此可求得的取值范围.【详解】如下图所示,由正六边形的几何性质可知,、、、、、均为边长为的等边三角形,当点位于正六边形的顶点时,取最大值,当点为正六边形各边的中点时,取最小值,即,所以,.所以,.故答案为:.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.8.(2021·福清西山学校高一月考)“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形中,满足“勾3股4弦5”,且,为上一点,.若,则的值为()A. B. C. D.1【答案】B【分析】建立平面直角坐标系,进而利用向量的坐标表示,设,由可得,再由,利用坐标表示建立方程组求解即可.【详解】由题意建立如图所示直角坐标系因为,,则,,,,,设,因为,所以,解得.由,得,所以解得所以,故选:B.【点睛】本题主要考查了向量的坐标运算及向量垂直的坐标表示,属于基础题.二、多选题9.(2021·重庆北碚·西南大学附中高一期末)奔驰定理:已知是内的一点,,,的面积分别为,,,则.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedesbenz)的logo很相似,故形象地称其为“奔驰定理”.若、是锐角内的点,、、是的三个内角,且满足,,则()A.B.C.D.【答案】ABCD【分析】变形后表示为,再由奔驰定理得出向量的关系,利用平面向量基本定理判断A,利用数量积的运算,变形后证明是的重心,由平面几何知识判断B,利用数量积的定义表示已知数量积的等式,结合选项B的结论可证明C,求出的面积,利用选项B的结论转化,再利用选项C的结论可得面积比,然后结合奔驰定理可判断D.【详解】因为,所以,即,所以,又由奔驰定理得,因为不共线,所以,所以,A正确;延长分别与对边交于点,如图,由得,所以,同理,所以是的垂心,所以四边形中,,所以,B正确;由得,所以,由选项B得,,,所以,C正确;由上讨论知,,,所以,又由选项C:,得,由奔驰定理:得,D正确.故选:ABCD.【点睛】本题考查平面向量基本定理的应用,考查学生的创新能力,理解新知识、应用新知识的能力.解题关键一是利用平面向量基本定理知用基底表示平面上任一向量的方法是唯一的,由此可得等量关系,二是利用数量积的运算得出是三角形的垂心,由此利用平面几何知识得出角的关系,再利用三角函数知识进行推导得出相应结论.10.(2021·邯山区新思路学本文化辅导学校高一期中)我国汉代数学家赵爽为了证明勾股定理,创制了一副“勾股圆方图”,后人称其为“赵爽弦图”.如图,大正方形由四个全等的直角三角形与一个小正方形拼成,其中小正方形的边长为1,E为的中点,则()A. B. C. D.【答案】ABC【分析】A.根据小正方形的边长为1,E为的中点,得到,大正方形的边长为求解判断;B.利用向量的求模公式求解判断;C.延长交于点G,得到为的中点,G为的中点求解判断;D.利用向量的数量积运算求解判断.【详解】因为小正方形的边长为1,E为的中点,所以,大正方形的边长为,所以,A正确;,B正确;如图:,延长交于点G,则为的中点,可得G为的中点,,所以,,C正确;,D错误.故选:ABC11.(2021·湖北高一期中)著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理被称为欧拉线定理.已知的外心为,垂心为,重心为,且,,则下列说法正确的是()A. B.C. D.【答案】ACD【分析】设是中点,由为垂心,得,判断A,利用,,计算数量积判断B,同时可判断C,由重心性质得,然后由向量的线性运算判断D.【详解】为垂心,,所以,A正确;设是中点,则共线,,,B错误;由B的推导过程得,C正确;由得,所以,所以,即,D正确故选:ACD.12.(2021·沛县教师发展中心)定义平面向量之间的一种运算“⊙”如下:对任意的,,令,下面说法正确的是()A.若与共线,则=0B.=C.对任意的λ∈R,有()⊙=()D.()2+()2=||2||2【答案】ACD【分析】利用给定定义对各选项逐一计算并判断作答.【详解】因对任意的,,,则:对于A,因与共线,则,即=0,A正确;对于B,因,则B不正确;对于C,对任意的λ∈R,,则()⊙,C正确;对于D,()2+()2,D正确.故选:ACD三、填空题13.(2021·江苏常州·)笛卡尔坐标系是直角坐标系与斜角坐标系的统称,如图,在平面斜角坐标系中,两坐标轴的正半轴的夹角为,,分别是与轴,轴正方向同向的单位向量,若向量,则称有序实数对为在该斜角坐标系下的坐标.若向量,在该斜角坐标系下的坐标分别为,,当_______时,.【答案】【分析】根据斜角坐标定义写出向量(用两个已知单位向量表示),然后由向量数量积计算可得.【详解】由已知,,,,解得:.故答案为:.14.(2021·全国高三(文))定义向量列从第二项开始,每一项与它的前一项的差都等于同一个常向量(即坐标都是常数的向量)即,且,其中为常向量,则称这个向量列为等差向量列.这个常向量叫做等差向量列的公差向量,且向量列的前项和.已知等差向量列满足,,则向量列的前项和__________.【答案】【分析】根据题意分析,等差数列性质对等差向量列也适用,再由等差数列通项公式和前n项和公式,计算等差向量列的通项和前n项和而得解.【详解】因向量线性运算的坐标运算,是向量的横坐标、纵坐标分别进行对应的线性运算,则等差数列的性质在等差向量列里而也适用,由等差数列的等差中项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 造纸行业的品牌策略与价值传递考核试卷
- 谷物储存的粮食防潮技术考核试卷
- 神经科学与心理学研究出版考核试卷
- 茶叶栽培的农业知识与技术推广考核试卷
- 电机在电力工具中的应用评估考核试卷
- 聚己内酰胺纤维性能测试考核试卷
- 砼结构构件的施工材料管理考核试卷
- 拍卖行业网络安全防护考核试卷
- 罐头食品生产卫生管理考核试卷
- 服务机器人技术成果转化与应用考核试卷
- 中考物理总复习几点建议和思考(ppt课件)
- 超星尔雅学习通《大学生魅力讲话实操》章节测试含答案
- 土地复垦方案编制规程第1部分通则
- 建筑施工重大危险源的辨识及控制措施
- T∕CAGHP 065.2-2019 地质灾害防治工程工程量清单计价规范(试行)
- 三宝证盟荐亡往生功德文疏
- 钢结构课程设计--钢结构平台设计
- 涉及饮用水卫生安全产品卫生许可证申请表
- 供热对供电煤耗影响量的计算
- 绿城集团精装修验收标准-
- 突发安全生产事故应急救援预案(现场处理方案)
评论
0/150
提交评论