




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数字图像处理
(DigitalImageProcessing)图像分割Imagesegmentationdividesanimageintoregionsthatareconnectedandhavesomesimilaritywithintheregionandsomedifferencebetweenadjacentregions.
Thegoalisusuallytofindindividualobjectsinanimage.Forthemostparttherearefundamentallytwokindsofapproachestosegmentation:discontinuityandsimilarity.Similaritymaybeduetopixelintensity,colorortexture.Differencesaresuddenchanges(discontinuities)inanyofthese,butespeciallysuddenchangesinintensityalongaboundaryline,whichiscalledanedge.ConceptsandApproachesWhatisImageSegmentation?ImageSegmentationMethodsThresholdingBoundary-basedRegion-based:regiongrowing,splittingandmergingConceptsandApproachesPartitionanimageintoregions,eachassociatedwithanobjectbutwhatdefinesanobject?Howtodefinethesimilaritybetweenregions?FromProf.XinLiAssumption:therangeofintensitylevelscoveredbyobjectsofinterestisdifferentfromthebackground.ThresholdingMethodThresholdingMethodthresholdinghistogramsinglethresholdmultiplethresholdsFrom[Gonzalez&Woods]GlobalThresholdingThresholdingMethod:BasicGlobalThresholding选取一个全局阈值T的初始估计用T分割图像为两部分:G1和G2计算区域G1和G2中的灰度均值m1和m2计算新的阈值:T=0.5(m1+m2)重复步骤2-4,直至T值收敛全局阈值估计基本算法GlobalThresholdingThresholdingMethod:BasicGlobalThresholdingThismethodtreatspixelvaluesasprobabilitydensityfunctions.Thegoalofthismethodistominimizetheprobabilityofmisclassifyingpixelsaseitherobjectorbackground.Therearetwokindsoferror:mislabelinganobjectpixelasbackground,andmislabelingabackgroundpixelasobject.OptimalGlobalThresholding计算图像归一化直方图,pi(i=0,1,2,…,L-1)计算累积直方图P1,令P2=1-P1计算累积灰度均值m1和m2计算全局灰度mG计算类间方差var(k)取使得var(k)最大的k值,即为Otsu阈值k*Otsu最佳全局阈值估计算法Otsu’sThresholdingThresholdingTheRoleofIlluminationThresholdingTheRoleofNoiseThresholdingTheRoleofNoise---DenosingThresholdingMethod:BasicGlobalThresholdingGlobalThresholding:WhendoesItNOTWork?AmeaningfulglobalthresholdmaynotexistImage-dependentglobalthresholdingBasicAdaptiveThresholdingBasicAdaptiveThresholdingThresholdingT=4.5ThresholdingT=5.5trueobjectboundaryBasicAdaptiveThresholdingThresholdingT=4.5ThresholdingT=5.5trueobjectboundarySplitSolutionSpatiallyadaptivethresholdingLocalizedprocessingBasicAdaptiveThresholdingThresholdingT=4ThresholdingT=7ThresholdingT=4ThresholdingT=7spatiallyadaptivethresholdselectionBasicAdaptiveThresholdingmergemergemergemergemergelocalsegmentationresultsBasicAdaptiveThresholdingAdaptiveThresholdingMultipleThresholdsColorimagesegmentationandclusteringColorimagesegmentationandclusteringRegion-BasedMethod:RegionGrowingFrom[Gonzalez&Woods]Key:similaritymeasureRegionGrowingStartfromaseed,andletitgrow(includesimilarneighborhood)Region-BasedMethod:SplitandMergeSplitandMergeIterativelysplit(non-similarregion)andmerge(similarregions)Example:quadtreeapproachFrom[Gonzalez&Woods]Region-BasedMethod:SplitandMergeoriginalimage4regions4regions(nothingtomerge)splitmergeExample:QuadtreeSplitandMergeProcedureIteration1SplitStep
spliteverynon-uniformregionto4Merge
Step
mergealluniformadjacentregionsRegion-BasedMethod:SplitandMergefromIteration113regions4regionssplitmergeExample:QuadtreeSplitandMergeProcedureIteration2SplitStep
spliteverynon-uniformregionto4Merge
Step
mergealluniformadjacentregionsRegion-BasedMethod:SplitandMergefromIteration210regionssplitmergeExample:QuadtreeSplitandMergeProcedureIteration3finalsegmentationresult2regionsSplitStep
spliteverynon-uniformregionto4Merge
Step
mergealluniformadjacentregionsRegion-BasedMethod:SplitandMergeHardProblem:TexturesSimilaritymeasuremakesthedifferenceFromProf.XinLiedgedetectionboundarydetectionclassificationandlabelingimagesegmentationBoundary-BasedMethodDetectionofDiscontinuitiesTherearethreekindsofdiscontinuitiesofintensity:points,linesandedges.Themostcommonwaytolookfordiscontinuitiesistoscanasmallmaskovertheimage.Themaskdetermineswhichkindofdiscontinuitytolookfor.
PointDetection点检测(拉普拉斯)模板LineDetectionOnlyslightlymorecommonthanpointdetectionistofindaonepixelwidelineinanimage.Fordigitalimagestheonlythreepointstraightlinesareonlyhorizontal,vertical,ordiagonal(+or–45
).LineDetectionEdgeDetectionEdgeDetectionEdgeDetectionEdgeDetection:GradientOperatorsFirst-orderderivatives:Thegradientofanimagef(x,y)atlocation(x,y)isdefinedasthevector:Themagnitudeofthisvector:Thedirectionofthisvector:EdgeDetection:GradientOperatorsEdgeDetection:GradientOperatorsEdgeDetection:GradientOperatorsRobertscross-gradientoperatorsPrewittoperatorsSobeloperatorsGradientOperators:ExampleGradientOperators:ExampleGradientOperators:ExampleEdgeDetection:GradientOperatorsSecond-orderderivatives:(TheLaplacian)TheLaplacianofan2Dfunctionf(x,y)isdefinedasTwoformsinpractice:EdgeDetection:Marr-HildrethEdgeDetectorConsiderthefunction:TheLaplacianofhisTheLaplacianofaGaussiansometimesiscalledtheMexicanhatfunction.Italsocanbecomputedby
smoothingtheimagewiththeGaussiansmoothingmask,followedbyapplicationoftheLaplacianmask.TheLaplacianofaGaussian(LoG)AGaussianfunctionEdgeDetection:Marr-HildrethEdgeDetectorEdgeDetection:Marr-HildrethEdgeDetectorZerocrossingofthesecondderivativeofafunctionindicatesthepresenceofamaximaEdgeDetection:Marr-HildrethEdgeDetectorStepsSmooththeimageusingGaussianfilterEnhancetheedgesusingLaplacianoperatorZerocrossingsdenotetheedgelocationUselinearinterpolationtodeterminethesub-pixellocationoftheedgeMarr-HildrethEdgeDetector:ExampleZeroCrossingsDetectionEdgeImageZeroCrossingsMarr-HildrethEdgeDetector:ExampleSobelgradientLaplacianmaskGaussiansmoothfunctionMarr-HildrethEdgeDetector:ExampleEdgeDetection:CannyEdgeDetectorOptimaledgedetectordependingonLowerrorrate–edgesshouldnotbemissedandtheremustnotbespuriousresponsesLocalization–distancebetweenpointsmarkedbythedetectorandtheactualcenteroftheedgeshouldbeminimumResponse–OnlyoneresponsetoasingleedgeOnedimensionalformulationAssumethat2DimageshaveconstantcrosssectioninsomedirectionEdgeDetection:CannyEdgeDetectorDependingontheaboveprinciples,severaloptimaledgedetectorsarecalculatedBestapproximationtotheabovedetectorsistheFirstDerivativeofGaussianItischosenbecauseoftheeaseofcomputationin2dimensionsImplementationofCannyEdgeDetectorStep1Noiseisfilteredout–usuallyaGaussianfilterisusedWidthischosencarefullyStep2EdgestrengthisfoundoutbytakingthegradientoftheimageARobertsmaskoraSobelmaskcanbeusedImplementationofCannyEdgeDetectorStep3FindtheedgedirectionStep4ResolveedgedirectionImplementationofCannyEdgeDetectorStep5Non-maximasuppression–tracealongtheedgedirectionandsuppressanypixelvaluenotconsideredtobeanedge.GivesathinlineforedgeStep6Usedouble/hysterisisthresholdingtoeliminatestreakingCannyEdgeDetectorWewishtomarkpointsalongthecurvewherethemagnitudeisbiggest.Wecandothisbylookingforamaximumalongaslicenormaltothecurve(non-maximumsuppression).Thesepointsshouldformacurve.Therearethentwoalgorithmicissues:atwhichpointisthemaximum,andwhereisthenextone?Non-MaximumSuppressionNon-MaximumSuppressionSuppressthepixelsin‘GradientMagnitudeImage’whicharenotlocalmaximumNon-MaximumSuppressionNon-MaximumSuppressionHysteresisThresholdingHysteresisThresholdingIfthegradientatapixelisabove‘High’,declareitan‘edgepixel’Ifthegradientatapixelisbelow‘Low’,declareita‘non-edge-pixel’Ifthegradientatapixelisbetween‘Low’and‘High’thendeclareitan‘edgepixel’ifandonlyifitisconnectedtoan‘edgepixel’directlyorviapixelsbetween‘Low’and‘High’HysteresisThresholdingCannyEdgeDetector:ExampleCannySobelEdgeDetection:CannyAlgorithmEdgeLinkingandBoundaryDetection:LocalProcessingTwopropertiesofedgepointsareusefulforedgelinking:thestrength(ormagnitude)ofthedetectededgepointstheirdirections(determinedfromgradientdirections)Thisisusuallydoneinlocalneighborhoods.Adjacentedgepointswithsimilar
magnitudeanddirectionarelinked.Forexample,anedgepixelwithcoordinates(x0,y0)inapredefinedneighborhoodof(x,y)issimilartothepixelat(x,y)ifEdgeLinkingandBoundaryDetection:LocalProcessingInthisexample,wecanfindthelicenseplatecandidateafteredgelinkingprocess.HoughTransformMethodtoisolatetheshapesfromanimagePerformedafteredgedetectionNotaffectedbynoiseorgapsintheedgesTechniqueThresholdingisusedtoisolatepixelswithstrongedgegradientParametricequationofstraightlineisusedtomaptheedgepointstotheHoughparameterspacePointsofintersectionintheHoughparameterspacegivestheequationoflineonactualimageEdgeLinkingandB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年阿坝藏族羌族自治州若尔盖县数学三上期末学业质量监测试题含解析
- 2024年鹰潭市贵溪市三年级数学第一学期期末质量检测试题含解析
- 2024年丽江地区玉龙纳西族自治县三年级数学第一学期期末学业质量监测模拟试题含解析
- 2024年佳木斯市数学三年级第一学期期末监测模拟试题含解析
- 公共营养师培训之第五章 技能课件
- 2025年临床操作考核试题及答案
- 文化交流中的价值观碰撞与融合试题及答案
- 职业道德案例分析试题及答案
- 主管护师考试创新思维试题及答案
- 主管护师考试策略与试题及答案
- 2025年中考物理压轴题专项练习:创新性题型 (含解析)
- 预防与解决劳动纠纷
- 2024年03月全国北京银行总行社会招考(315)笔试历年参考题库附带答案详解
- 广东省揭阳市2025年中考语文模拟试卷五套【附参考答案】
- 工程竣工验收申请表范本
- 成都市城市下穿隧道主体工程施工组织设计(技术标)
- 我爱家乡主题课程设计
- 2025年宏泰集团招聘笔试参考题库含答案解析
- 台州职业技术学院《大数据财务分析》2023-2024学年第一学期期末试卷
- Excel高效办公应用与技巧知到智慧树章节测试课后答案2024年秋四川职业技术学院
- 酒店行业安全事故举报与奖励制度
评论
0/150
提交评论