版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2025届浙江省温州市名校九上数学开学预测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在四边形ABCD中,AC与BD相交于点O,∠BAD=90°,BO=DO,那么添加下列一个条件后,仍不能判定四边形ABCD是矩形的是()A.∠ABC=90° B.∠BCD=90° C.AB=CD D.AB∥CD2、(4分)已知关于x的不等式(2﹣a)x>1的解集是x<;则a的取值范围是()A.a>0 B.a<0 C.a<2 D.a>23、(4分)如图,是一钢架,且,为使钢架更加牢固,需在其内部添加-一些钢管、、,添加的钢管都与相等,则最多能添加这样的钢管()A.根 B.根 C.根 D.无数根4、(4分)下列方程中,有实数解的方程是()A. B.C. D.5、(4分)长春市某服装店销售夏季T恤衫,试销期间对4种款式T恤衫的销售量统计如下表:款式ABCD销售量/件1851该店老板如果想要了解哪种款式的销售量最大,那么他应关注的统计量是(
)A.平均数 B.众数 C.中位数 D.方差6、(4分)随着人民生活水平的提高,中国春节已经成为中国公民旅游黄金周.国家旅游局数据显示,2017年春节中国公民出境旅游约615万人次,2018,2019两年出境旅游人数持续增长,在2019年春节出境旅游达到700万人次,设2018年与2019年春节出境旅游总量较上一年春节的平均增长率为,则下列方程正确的是().A.615(1+x)=700 B.615(1+2x)=700C. D.7、(4分)下列事件中是必然事件的是()A.明天太阳从东边升起;B.明天下雨;C.明天的气温比今天高;D.明天买彩票中奖.8、(4分)在四边形中,,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,菱形中,垂直平分,垂足为,.那么菱形的对角线的长是_____.10、(4分)如图,在平面直角坐标系中,菱形OABC的顶点O是原点,顶点B在y轴正半轴上,顶点A在第一象限,菱形的两条对角线长分别是8和6,函数y=kx(x<0)的图象经过点C,则k的值为________11、(4分)如图,菱形ABCD的对角线相交于点O,若AB=5,OA=4,则菱形ABCD的面积_____.12、(4分)如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC,BD相交于点O,点E在AB上,且BE=BO,则∠EOA=___________°.13、(4分)已知一组数据﹣3、3,﹣2、1、3、0、4、x的平均数是1,则众数是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在梯形中中,,是的中点,,,,,点是边上一动点,设的长为.(1)当的值为多少时,以点为顶点的三角形为直角三角形;(2)当的值为多少时,以点为顶点的四边形为平行四边形;(3)点在边上运动的过程中,以为顶点的四边形能否构成菱形?试说明理由.15、(8分)在平面直角坐标系中,点A的坐标为,以线段OA为边作等边三角形,使点B落在第四象限内,点C为x正半轴上一动点,连接BC,以线段BC为边作等边三角形,使点D落在第四象限内.(1)如图1,在点C运动的过程巾,连接AD.①和全等吗?请说明理由:②延长DA交y轴于点E,若,求点C的坐标:(2)如图2,已知,当点C从点O运动到点M时,点D所走过的路径的长度为_________16、(8分)某乳品公司向某地运输一批牛奶,由铁路运输每千克需运费0.60元,由公路运输,每千克需运费0.30元,另需补助600元(1)设该公司运输的这批牛奶为x千克,选择铁路运输时,所需运费为y1元,选择公路运输时,所需运费为y2元,请分别写出y1、y2与x之间的关系式;(2)若公司只支出运费1500元,则选用哪种运输方式运送的牛奶多?若公司运送1500千克牛奶,则选用哪种运输方式所需费用较少?17、(10分)计算18、(10分)在平面直角坐标系xOy中,对于点,若点Q的坐标为,其中a为常数,则称点Q是点P的“a级关联点”例如,点的“3级关联点”为,即.已知点的“级关联点”是点,点B的“2级关联点”是,求点和点B的坐标;已知点的“级关联点”位于y轴上,求的坐标;已知点,,点和它的“n级关联点”都位于线段CD上,请直接写出n的取值范围.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某市出租车的收费标准如下:起步价5元,即千米以内(含千米)收费元,超过千米的部分,每千米收费元.(不足千米按千米计算)求车费(元)与行程(千米)的关系式________.20、(4分)如图,AC是菱形ABCD的对角线,AC=8,AB=5,则菱形ABCD的面积是_________.21、(4分)如图,一次函数的图象与x轴、y轴分别交于点A、B,将沿直线AB翻折得到,连接OC,那么线段OC的长为______.22、(4分)某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,设购买了甲种票张,乙种票张,由此可列出方程组为______.23、(4分)计算:=______.二、解答题(本大题共3个小题,共30分)24、(8分)一个三角形三边的长分别为a,b,c,设p=(a+b+c),根据海伦公式S=可以求出这个三角形的面积.若a=4,b=5,c=6,求:(1)三角形的面积S;(2)长为c的边上的高h.25、(10分)一个四位数,记千位上和百位上的数字之和为,十位上和个位上的数字之和为,如果,那么称这个四位数为“和平数”.例如:1423,,,因为,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.(3)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;26、(12分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,在平面直角坐标系中如图所示:完成下列问题:(1)画出△ABC绕点O逆时针旋转90∘后的△ABC;点B1的坐标为___;(2)在(1)的旋转过程中,点B运动的路径长是___(3)作出△ABC关于原点O对称的△ABC;点C的坐标为___.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据矩形的判定定理:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形分别进行分析即可.【详解】A、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠ABC=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;B、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠BCD=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;C、∵∠BAD=90°,BO=DO,AB=CD,无法得出△ABO≌△DCO,故无法得出四边形ABCD是平行四边形,进而无法得出四边形ABCD是矩形,错误;D、∵AB||CD,∠BAD=90°,∴∠ADC=90°,∵BO=DO,∴OA=OB=OD,∴∠DAO=∠ADO,∴∠BAO=∠ODC,∵∠AOB=∠DOC,∴△AOB≌△DOC,∴AB=CD,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴▱ABCD是矩形,正确;故选:C.此题主要考查了矩形的判定,关键是熟练掌握矩形的判定定理.2、D【解析】
根据已知不等式的解集,结合x的系数确定出1-a为负数,求出a的范围即可.【详解】∵关于x的不等式(1﹣a)x>1的解集是x<,∴1﹣a<0,解得:a>1.故选:D.考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.3、B【解析】
因为每根钢管的长度相等,可推出图中的5个三角形都是等腰三角形,再根据等腰三角形的性质和三角形的外角性质,计算出最大的∠OQB的度数(必须≤90°),就可得出钢管的根数.【详解】解:如图所示,∠AOB=15°,∵OE=FE,∴∠OFE=∠AOB=15°,∴∠GEF=15°×2=30°,∵EF=GF,所以∠EGF=30°,∴∠GFH=15°+30°=45°,∵GH=GF,∴∠GHF=45°,∠HGA=45°+15°=60°,∵GH=HQ,∴∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QB,∴∠QBH=75°,故∠OQB=180°-15°-75°=90°,再作与BQ相等的线段时,90°的角不能是底角,则最多能作出的钢管是:EF、FG、GH、HQ、QB,共有5根.故选B.本题考查了等腰三角形的性质和三角形外角的性质,弄清题意,发现规律,正确求得图中各角的度数是解题的关键.4、C【解析】
根据二次根式的非负性,可判断A、D无实数根,C有实数根,B解得x=2是分式方程的增根.【详解】A中,要使二次根式有意义,则x-2≥0,2-x≥0,即x=2,等式不成立,错误;B中,解分式方程得:x=2,是方程的增根,错误;D中,≥0,则≥3,等式不成立,错误;C中,∵,其中≥0,故-1≤x≤0解得:x=(舍),x=(成立)故选:C本题考查二次根式的非负性和解分式方程,注意在求解分式方程时,一定要验根.5、B【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是对4种款式T恤衫的销售量情况作调查,所以应该关注销量的最多,故值得关注的是众数.【详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选B.本题考查了统计的有关知识,熟知平均数、中位数、众数、方差的意义是解决问题的关键.6、C【解析】
设2018年与2019年春节出境旅游总量较上一年春节的平均增长率为,根据2017年及2019年出境旅游人数,即可得出关于的一元二次方程,即可得解;【详解】由题意可得:故选:C.本题主要考查一元二次方程的实际应用,充分理解题意是解决本题的关键.7、A【解析】【分析】根据必然事件和随机事件的定义进行分析.【详解】A.明天太阳从东边升起,是必然事件,故可以选;B.明天下雨,是随机事件,故不能选;C.明天的气温比今天高,是随机事件,故不能选;D.明天买彩票中奖,是随机事件,故不能选.故选:A【点睛】本题考核知识点:必然事件和随机事件.解题关键点:理解必然事件和随机事件的定义.8、A【解析】
由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【详解】∵四边形ABCD中,∠A=∠B=∠C=90°,∴四边形ABCD是矩形,当一组邻边相等时,矩形ABCD为正方形,这个条件可以是:.故选A.此题考查正方形的判定,解题关键在于掌握判定定理.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
由垂直平分可得,再由菱形的性质得出,根据勾股定理求出,即可得出.【详解】解:垂直平分,AB=2cm,∴=2cm,在菱形ABCD中,,,,,,;故答案为:.本题考查了垂直平分线的性质、菱形的性质、勾股定理的运用;熟练掌握菱形的性质,运用勾股定理求出是解决问题的关键.10、-12.【解析】
根据题意可得点C的坐标为(-4,3),将点C的坐标代入y=kx中求得k值即可【详解】根据题意可得点C的坐标为(-4,3),将点C的坐标代入y=kx3=k-4解得k=-12.故答案为:-12.本题考查了菱形的性质及求反比例函数的解析式,求得点C的坐标为(-4,3)是解决问题的关键.11、3【解析】
根据菱形的性质:菱形的两条对角线互相垂直可计算出该菱形的面积.【详解】解:因为四边形ABCD是菱形,所以AC⊥BD.在Rt△AOB中,利用勾股定理求得BO=1.∴BD=6,AC=2.∴菱形ABCD面积为×AC×BD=3.故答案为3.本题考查了菱形的性质的灵活运用,熟练运行菱形的性质来求其面积是解决此题的关键.12、1【解析】
根据∠BAD和菱形邻角和为180°的性质可以求∠ABC的值,根据菱形对角线即角平分线的性质可以求得∠ABO的值,又由BE=BO可得∠BEO=∠BOE,根据∠BOE和菱形对角线互相垂直的性质可以求得∠EOA的大小.【详解】解:∵∠BAD=80°,菱形邻角和为180°
∴∠ABC=100°,
∵菱形对角线即角平分线
∴∠ABO=50°,
∵BE=BO
∴∠BEO=∠BOE==65°,
∵菱形对角线互相垂直
∴∠AOB=90°,
∴∠AOE=90°-65°=1°,
故答案为1.本题考查了菱形对角线互相垂直平分且平分一组对角的性质,考查了等腰三角形底角相等的性质,本题中正确的计算∠BEO=∠BOE=65°是解题的关键.13、3【解析】∵-3、3,-2、1、3、0、4、x的平均数是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一组数据-3、3,-2、1、3、0、4、2,∴众数是3.故答案是:3.三、解答题(本大题共5个小题,共48分)14、(1)当的值为3或8时,以点为顶点的三角形为直角三角形;(2)当的值为1或11时,以点为顶点的四边形为平行四边形;(3)以点为顶点的四边形能构成菱形,理由详见解析.【解析】
(1)过AD作于,于,当时,分情况讨论,求出即可;(2)分为两种情况,画出图形,根据平行四边形的性质推出即可;(3)化成图形,根据菱形的性质和判定求出BP即可.【详解】解(1)如图,分别过AD作于,于∴而∴∴若以为顶点的三角形为直角三角形,则或,(在图中不存在)当时∴与重合∴当时∴与重合∴故当的值为3或8时,以点为顶点的三角形为直角三角形;(2)若以点为顶点的四边形为平行四边形,那么,有两种情况:①当在的左边,∵是的中点,∴∴②当在的右边,故当的值为1或11时,以点为顶点的四边形为平行四边形;(3)由(2)知,当时,以点为顶点的四边形能构成菱形当时,以点为顶点的四边形是平行四边形,∴,过作于,∵,,则,∴.∴,∴故此时是菱形即以点为顶点的四边形能构成菱形.此题考查直角三角形的性质,平行四边形的判定,解题关键在于作辅助线和利用勾股定理进行计算.15、(1)①全等,见解析;②点C(1,0);(2)1.【解析】
(1)①先根据等边三角形的性质得∠OBA=∠CBD=10°,OB=BA,BC=BD,则∠OBC=∠ABD,然后可根据“SAS”可判定△OBC≌△ABD;
②由全等三角形的性质可得∠BAD=∠BOC=∠OAB=10°,可得∠EAO=10°,可求AE=2OA=4,即可求点C坐标;
(2)由题意可得点E是定点,点D在AE上移动,点D所走过的路径的长度=OC=1.【详解】解:(1)①△OBC和△ABD全等,
理由是:
∵△AOB,△CBD都是等边三角形,
∴OB=AB,CB=DB,∠ABO=∠DBC,
∴∠OBC=∠ABD,
在△OBC和△ABD中,
∴△OBC≌△ABD(SAS);
②∵△OBC≌△ABD,
∵∠BAD=∠BOC=10°,
又∵∠OAB=10°,
∴∠OAE=180°-∠OAB-∠BAD=10°,
∴Rt△OEA中,AE=2OA=4
∴OC=OA+AC=1
∴点C(1,0);
(2)∵△OBC≌△ABD,
∵∠BAD=∠BOC=10°,AD=OC,
又∵∠OAB=10°,
∴∠OAE=180°-∠OAB-∠BAD=10°,
∴AE=2OA=4,OE=2∴点E(0,2)
∴点E不会随点C位置的变化而变化
∴点D在直线AE上移动
∵当点C从点O运动到点M时,
∴点D所走过的路径为长度为AD=OC=1.
故答案为:(1)①全等,见解析;②点C(1,0);(2)1.本题是三角形的综合问题,主要考查全等三角形的判定与性质,等边三角形的性质的运用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.解题的关键是利用等腰三角形的性质求出点C的坐标.16、(1);(2)公路运输方式运送的牛奶多,铁路运输方式所需用较少.【解析】分析:(1)由总价=单价×数量+其他费用,就可以得出y与x之间的函数关系式;(2)将y=1500或x=1500分别代入(1)的解析式就可以求出结论;详解:(1),(2)解得:,解得:.∵3000>2500,∴公路运输方式运送的牛奶多,∴(元),(元).∵1050>900,∴铁路运输方式所需费用较少.点睛:本题考查了单价×数量=总价的运用,由函数值求自变量的值及由自变量的值求函数值的运用,有理数大小比较的运用,分类讨论思想的运用,解答时求出函数的解析式是关键.17、【解析】
根据二次根式的运算法则即可求出答案.【详解】原式=本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.18、(1),;(2);(3).【解析】
(1)根据关联点的定义,结合点的坐标即可得出结论.(2)根据关联点的定义和点M(m-1,2m)的“-3级关联点”M'位于y轴上,即可求出M'的坐标.(3)因为点C(-1,3),D(4,3),得到y=3,由点N(x,y)和它的“n级关联点”N'都位于线段CD上,可得到方程组,解答即可.【详解】解:点的“级关联点”是点,,即.设点,点B的“2级关联点”是,,解得.点的“级关联点”为,位于y轴上,,解得:,.点和它的“n级关联点”都位于线段CD上,,,,,解得:.本题考查了一次函数图象上的坐标的特征,“关联点”的定义等知识,正确理解题意,灵活运用所学知识解决问题是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
本题是一道分段函数,当和是由收费与路程之间的关系就可以求出结论.【详解】由题意,得
当时,
;
当时,
,∴,故答案为:.本题考查了分段函数的运用,解答时求出函数的解析式是关键.20、21【解析】
连接BD交AC于点O,已知AC即可求AO,菱形对角线互相垂直,所以△AOB为直角三角形,根据勾股定理即可求BO的值,即可求BD的值,根据AC、BD可以求菱形ABCD的面积.【详解】如图,连接BD交AC于点O.∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO.∵AC=8,∴AO=1.在Rt△AOB中,BO3,∴BD=2BO=6,∴菱形ABCD的面积为S6×8=21.故答案为:21.本题考查了菱形的性质,勾股定理.根据勾股定理求BO的值是解题的关键.21、.【解析】
利用一次函数图象上点的坐标特征求得点A、B的坐标,易得线段AB的长度,然后利用面积法求得OD的长度,结合翻折图形性质得到.【详解】解:如图,设直线OC与直线AB的交点为点D,一次函数的图象与x轴、y轴分别交于点A、B,、,,,,将沿直线AB翻折得到,,,.故答案是:.考查了一次函数图象与几何变换,此题将求线段OC的长度转换为求直角三角形AOB斜边上高的问题,降低了题目的难度.22、【解析】
本题有两个相等关系:购买甲种票的人数+购买乙种票的人数=40;购买甲种票的钱数+购买乙种票的钱数=370,再根据上述的等量关系列出方程组即可.【详解】解:由购买甲种票的人数+购买乙种票的人数=40,可得方程;由购买甲种票的钱数+购买乙种票的钱数=370,可得,故答案为.本题考查了二元一次方程组的应用,认真审题、找准蕴含在题目中的等量关系是解决问题的关键,一般来说,设两个未知数,需要寻找两个等量关系.23、.【解析】解:=;故答案为:.点睛:此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则是本题的关键.二、解答题(本大题共3个小题,共30分)24、(1);(2)【解析】
(1)先根据a、b、c的值求出p,再代入公式计算可得;(2)由题意得出ch=,解之可得.【详解】解:(1)p=(4+5+6)=.p-a=-4=,p-b=-5=,p-c=-6=.S===;(2)∵S=ch,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年长沙市公安局巡特警支队公开招聘普通雇员备考题库带答案详解
- 建筑工程安全课件
- 2026年昭通市公安局招聘辅警备考题库有答案详解
- 2025-2030中国啤酒行业深度发展研究与“”企业投资战略规划报告
- 2026年雁塔区华育小天使幼儿园招聘5人备考题库及完整答案详解一套
- 2025至2030中国养老护理市场运行分析及发展前景与投资研究报告
- 2026年重庆护理职业学院(第一批)公开招聘工作人员备考题库及1套完整答案详解
- 2026年湛江市坡头区南三镇人民政府招聘编外人员备考题库及1套参考答案详解
- 2026年浙江长兴空域产业发展有限公司公开招聘职业经理人备考题库及完整答案详解1套
- 2026年武义县应急管理局招聘备考题库及1套参考答案详解
- 医院患者护理隐患预警及上报制度
- 2026年春节放假通知模板范文
- 非电量保护培训
- 第四单元“爱国情怀”(主题阅读)-五年级语文上册阅读理解(统编版)
- 海洋科技课件
- 口腔种植进修汇报
- 党建品牌管理办法
- 国外退货管理办法
- 氧疗设备的安全使用与维护
- 乡镇建筑垃圾管理办法
- 琼海市2025年公开招聘事业单位工作人员和农垦移交医院工作人员笔试岗位排名及笔试合格分数线笔试历年典型考题及考点剖析附带答案详解
评论
0/150
提交评论