版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2025届重庆市垫江五中学数学九上开学学业水平测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在△ABC中,∠C=90°,∠B=15°,AC=3,AB的垂直平分线l交BC于点D,连接AD,则BC的长为()A.12 B.3+3 C.6+3 D.62、(4分)如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是()A.-1 B. C. D.23、(4分)如图,在矩形ABED中,AB=4,BE=EC=2,动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是()A. B.C. D.4、(4分)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.65、(4分)为了解我市参加中考的15000名学生的视力情况,抽查了1000名学生的视力进行统计分析,下面四个判断正确的是()A.15000名学生是总体B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查6、(4分)如图:点E、F为线段BD的两个三等分点,四边形AECF是菱形,且菱形AECF的周长为20,BD为24,则四边形ABCD的面积为()A.24 B.36 C.72 D.1447、(4分)已知一次函数y=x﹣1的图象经过点(1,m),则m的值为()A. B.1 C.- D.﹣18、(4分)下表是某公司员工月收入的资料:月收入/元45000180001000055005000340033001000人数111361111能够反映该公司全体员工月收入水平的统计量是()A.平均数和众数 B.平均数和中位数C.中位数和众数 D.平均数和方差二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,菱形ABCD的两条对角线长分别为6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点则PM+PN的最小值是_10、(4分)已知:如图,△ABC中,∠ACB=90°,AB=5cm,AC=4cm,CD⊥AB于D,求CD的长及三角形的面积.11、(4分)若的三边长分别是6、8、10,则最长边上的中线长为______.12、(4分)如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为_____.13、(4分)▱ABCD的周长是30,AC、BD相交于点O,△OAB的周长比△OBC的周长大3,则AB=_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平面直角坐标系xoy中,矩形OABC的顶点B坐标为(12,5),点D在CB边上从点C运动到点B,以AD为边作正方形ADEF,连BE、BF,在点D运动过程中,请探究以下问题:(1)△ABF的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;(2)若△BEF为等腰三角形,求此时正方形ADEF的边长;(3)设E(x,y),直接写出y关于x的函数关系式及自变量x的取值范围.15、(8分)我们用a表示不大于a的最大整数,用a表示大于a的最小整数.例如:2.52,33,2.53;<2.5>3,<4>5,<1.5>1.解决下列问题:(1)4.5,<3.5>.(2)若x2,则<x>的取值范围是;若<y>1,则y的取值范围是.(3)已知x,y满足方程组;求x,y的取值范围.16、(8分)如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1、4、1.则△ABC的面积是.17、(10分)如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是()①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.A.1个 B.2个 C.3个 D.4个18、(10分)如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为ts(0<t<4).(1)求证:AF∥CE;(2)当t为何值时,四边形EHFG为菱形;(3)试探究:是否存在某个时刻t,使四边形EHFG为矩形,若存在,求出t的值,若不存在,请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则BC的长是______.20、(4分)如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为_____cm.21、(4分)给出下列3个分式:,它们的最简公分母为__________.22、(4分)小张将自己家里1到6月份的用电量统计并绘制成了如图所示的折线统计图,则小张家1到6月份这6个月用电量的众数与中位数的和是_____度.23、(4分)如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.二、解答题(本大题共3个小题,共30分)24、(8分)在社会主义新农村建设中,衢州某乡镇决定对A、B两村之间的公路进行改造,并有甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?25、(10分)如图,在平行四边形ABCD中,AE、AF是平行四边形的高,,,,DE交AF于G.(1)求线段DF的长;(2)求证:是等边三角形.26、(12分)如图1.点D,E在△ABC的边BC上.连接AD.AE.①AB=AC:②AD=AE:③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论.构成三个命题:①②③;①③②,②③①.(1)以上三个命题是真命题的为(直接作答)__________________;(2)选择一个真命题进行证明(先写出所选命题.然后证明).
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
利用垂直平分线的性质可得∠DAB=∠B=15°,可得∠ADC=30°,易得AD=BD=2AC,CD=AC,然后根据BC=BD+CD可得出结果.【详解】解:∵AB的垂直平分线l交BC于点D,∴AD=DB,∴∠B=∠DAB=15°,∴∠ADC=30°,∵∠C=90°,AC=3,∴AD=6=BD,CD=3.∴BC=BD+CD=6+3.故选:C.本题主要考查了垂直平分线的性质、含30°直角三角形的性质以及勾股定理,综合运用各性质定理是解答此题的关键.2、A【解析】
过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90°得到CH,连接HE,延长HE交AB的延长线于点J;通过证明△CKD≌△CHE(ASA),进而证明所构建的四边形CKJH是正方形,所以当点E与点J重合时,BE的值最小,再通过在Rt△CBK中已知的边角条件,即可求出答案.【详解】如图,过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90°得到CH,连接HE,延长HE交AB的延长线于点J;∵将线段CD绕点C逆时针旋转90°,得到线段CE∴∠DCE=∠KCH=90°∵∠ECH=∠KCH-∠KCE,∠DCK=∠DCE-∠KCE∴∠ECH=∠DCK又∵CD=CE,CK=CH∴在△CKD和△CHE中∴△CKD≌△CHE(ASA)∴∠CKD=∠H=90°,CH=CK∴∠CKJ=∠KCH=∠H=90°∴四边形CKJH是正方形∴CH=HJ=KJ=C'K∴点E在直线HJ上运动,当点E与点J重合时,BE的值最小∵∠A=30°∴∠ABC=60°在Rt△CBK中,BC=2,∴CK=BCsin60°=,BK=BCcos60°=1∴KJ=CK=所以BJ=KJ-BK=;BE的最小值为.故选A.本题主要考查了以线段旋转为载体的求线段最短问题,正方形的构建是快速解答本题的关键.3、D【解析】
分别求出点P在DE、AD、AB上运动时,S与t的函数关系式,继而根据函数图象的方向即可得出答案.【详解】解:根据题意得:当点P在ED上运动时,S=BC•PE=2t(0≤t≤4);当点P在DA上运动时,此时S=8(4<t<6);当点P在线段AB上运动时,S=BC(AB+AD+DE﹣t)=20﹣2t(6≤t≤10);结合选项所给的函数图象,可得D选项符合题意.故选:D.本题考查了动点问题的函数图象,解答该类问题也可以不把函数图象的解析式求出来,利用排除法进行解答.4、A【解析】试题分析:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故选B.考点:多边形内角与外角.5、B【解析】
总体是参加中考的15000名学生的视力情况,故A错误;1000名学生的视力是总体的一个样本,故B正确;每名学生的视力情况是总体的一个样本,故C错误;以上调查应该是抽查,故D错误;故选B.6、C【解析】
根据菱形的对角线互相垂直平分可得AC⊥BD,AO=OC,EO=OF,再求出BO=OD,证明四边形ABCD是菱形,根据菱形的四条边都相等求出边长AE,根据菱形的对角线互相平分求出OE,然后利用勾股定理列式求出AO,再求出AC,最后根据四边形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:如图,连接AC交BD于点O,∵四边形AECF是菱形,∴AC⊥BD,AO=OC,EO=OF,又∵点E、F为线段BD的两个三等分点,∴BE=FD,∴BO=OD,∵AO=OC,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形;∵四边形AECF为菱形,且周长为20,∴AE=5,∵BD=24,点E、F为线段BD的两个三等分点,∴EF=8,OE=EF=×8=4,由勾股定理得,AO===3,∴AC=2AO=2×3=6,∴S四边形ABCD=BD•AC=×24×6=72;故选:C.本题考查了菱形的判定与性质,主要利用了菱形的对角线互相垂直平分的性质,勾股定理以及利用菱形对角线求面积的方法,熟记菱形的性质与判定方法是解题的关键.7、C【解析】
把点(1,m)代入函数解析式,列出关于m的一元一次方程,通过解方程来求m的值.【详解】∵一次函数y=x﹣1的图象经过点(1,m),∴-1=m,解得m=-故选:C此题考查一次函数图象上点的坐标特征,解题关键在于把点代入解析式8、C【解析】
求出数据的众数和中位数,再与25名员工的收入进行比较即可.【详解】解:该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,所以众数能够反映该公司全体员工月收入水平;因为公司共有员工1+1+1+3+6+1+11+1=25人,所以该公司员工月收入的中位数为3400元;由于在25名员工中在此数据及以上的有13人,所以中位数也能够反映该公司全体员工月收入水平;故选C.此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】试题分析:要求PM+PN的最小值,PM,PN不能直接求,可考虑通过作辅助线转化PN,PM的值,从而找出其最小值求解.如图:作ME⊥AC交AD于E,连接EN,则EN就是PM+PN的最小值,∵M、N分别是AB、BC的中点,∴BN=BM=AM,∵ME⊥AC交AD于E,∴AE=AM,∴AE=BN,AE∥BN,∴四边形ABNE是平行四边形,而由已知可得AB=1∴AE=BN,∵四边形ABCD是菱形,∴AE∥BN,∴四边形AENB为平行四边形,∴EN=AB=1,∴PM+PN的最小值为1.考点:轴对称—最短路径问题点评:考查菱形的性质和轴对称及平行四边形的判定等知识的综合应用.综合运用这些知识是解决本题的关键10、S△ABC=6cm2,CD=cm.【解析】
利用勾股定理求得BC=3cm,根据直角三角形的面积等于两直角边乘积的一半即可求得△ABC的面积,再利用直角三角形的面积等于斜边乘以斜边上高的一半可得AB•CD=6,由此即可求得CD的长.【详解】∵∠ACB=90°,AB=5cm,AC=4cm,∴BC==3cm,则S△ABC=×AC×BC=×4×3=6(cm2).根据三角形的面积公式得:AB•CD=6,即×5×CD=6,∴CD=cm.本题考查了勾股定理、直角三角形面积的两种表示法,根据勾股定理求得BC=3cm是解决问题的关键.11、1【解析】
根据勾股定理的逆定理得到这个三角形是直角三角形,根据直角三角形斜边上中线的性质计算即可.【详解】解:,,,这个三角形是直角三角形,斜边长为10,最长边上的中线长为1,故答案为:1.本题考查的是直角三角形的性质、勾股定理的逆定理的应用,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.12、【解析】
解:过A点向x轴作垂线,如图:根据反比例函数的几何意义可得:四边形ABCD的面积为3,即|k|=3,又∵函数图象在二、四象限,∴k=﹣3,即函数解析式为:y=﹣.故答案为y=﹣.本题考查反比例函数系数k的几何意义.13、1.【解析】
如图:由四边形ABCD是平行四边形,可得AB=CD,BC=AD,OA=OC,OB=OD;又由△OAB的周长比△OBC的周长大3,可得AB﹣BC=3,又因为▱ABCD的周长是30,所以AB+BC=10;解方程组即可求得.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OA=OC,OB=OD;又∵△OAB的周长比△OBC的周长大3,∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3,又∵▱ABCD的周长是30,∴AB+BC=15,∴AB=1.故答案为1.三、解答题(本大题共5个小题,共48分)14、(1)不变,252,理由见解析;(2)55或52或525;(3)y=-x+22(5≤【解析】
(1)由“SAS”可证△ABD≌△FHA,可得HF=AB=5,即可求△ABF的面积;(2)分三种情况讨论,由等腰三角形的性质和勾股定理可求正方形ADEF的边长;(3)由全等三角形的性质,DH=AB=5,EH=DB,可得y=EH+5=DB+5,x=12-DB+DH=17-DB,即可求y关于x的函数关系式.【详解】解:(1)作FH⊥AB交AB延长线于H,∵正方形ADEF中,AD=AF,∠DAF=90°,∴∠DAH+∠FAH=90°.∵∠H=90°,∴∠FAH+∠AFH=90°,∴∠DAH=∠AFH,∵矩形OABC中,AB=5,∠ABD=90°,∴∠ABD=∠H∴△ABD≌△FHA,∴FH=AB=5,∴S△AEF(2)①当EB=EF时,作EG⊥CB∵正方形ADEF中,ED=EF,∴ED=EB,∴DB=2DG,同(1)理得△ABD≌△GDE,∴DG=AB=5,∴DB=10,∴AD=B②当EB=BF时,∠BEF=∠BFE,∵正方形ADEF中,ED=AF,∠DEF=∠AFE=90°,∴∠BED=∠BFA,∴△ABF≌△DBE,∴BD=AB=5,∵矩形OABC中,∠ABD=90°,∴AD=B③当FB=FE时,作FQ⊥AB,同理得BQ=AQ=52,BD=AQ=5∴AD=B(3)当5≤x≤12时,如图,
由(2)可知DH=AB=5,EH=DB,且E(x,y),∴y=EH+5=DB+5,x=12-DB+DH=17-DB,∴y=22-x,当12<x≤17时,如图,
同理可得:x=12-DB+5=17-DB,y=DB+5,∴y=22-x,综上所述:当5≤x≤17时,y=22-xy=-x+22(5≤x≤17).本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.15、(1)-5,4;(1)1≤x<3,-1≤y<-1;(3)-1≤x<0,1≤y<1
【解析】
(1)根据题目所给信息求解;
(1)根据[1.5]=1,[3]=3,[-1.5]=-3,可得[x]=1中的1≤x<3,根据<a>表示大于a的最小整数,可得<y>=-1中,-1≤y<-1;
(3)先求出[x]和<y>的值,然后求出x和y的取值范围.【详解】解:(1)由题意得:[-4.5]=-5,<y>=4;
故答案为:-5,4;(1)∵[x]=1,
∴x的取值范围是1≤x<3;
∵<y>=-1,
∴y的取值范围是-1≤y<-1;
故答案为:1≤x<3,-1≤y<-1;(3)解方程组,
得:,
∴x的取值范围为-1≤x<0,y的取值范围为1≤y<1.本题考查了一元一次不等式的应用与解二元一次方程组,解答本题的关键是读懂题意,根据题目所给的信息进行解答.16、64【解析】
试题分析:根据平行可得三个三角形相似,再由它们的面积比等于相似比的平方,设其中一边为一求未知数,然后计算出最大的三角形与最小的三角形的相似比,从而求面积比.【详解】如图,,过M作BC的平行线交AB,AC于D,E,过M作AC平行线交AB,BC于F,H,过M作AB平行线交AC,BC于I,G,根据题意得,△1∽△2∽△3,∵S△1:S△2=1:4,S△1:S△3=1:1,∴DM:EM:GH=1:2:5,又∵四边形BDMG与四边形CEMH为平行四边形,∴DM=BG,EM=CH,设DM为x,则BC=BG+GH+CH=x+5x+2x=8x,∴BC:DM=8:1,∴S△ABC:S△FDM=64:1,∴S△ABC=1×64=64,故答案为:64.17、B【解析】
由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;③不正确;即可得出结果.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,∵CD=DE,∴AB=DE,在△ABG和△DEG中,,∴△ABG≌△DEG(AAS),∴AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,①正确;∵AB∥CE,AB=DE,∴四边形ABDE是平行四边形,∵∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,④正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,,∴△ABG≌△DCO(SAS),∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,②不正确;∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;③不正确;正确的是①④.故选B.本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.18、(1)证明见解析;(2)t=1,(3)不存在某个时刻t,使四边形EHFG为矩形.【解析】
(1)根据菱形的性质得到∠B=∠D,AD=BC,AB∥DC,推出△ADF≌△CBE,根据全等三角形的性质得到∠DFA=∠BEC,根据平行线的判定定理即可得到结论;
(2)过D作DM⊥AB于M,连接GH,EF,推出四边形AECF是平行四边形,根据菱形的判定定理即可得到四边形EGFH是菱形,证得四边形DMEF是矩形,于是得到ME=DF=t列方程即可得到结论;
(3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,根据矩形的性质列方程即可得到结果.【详解】(1)证明:∵动点E、F同时运动且速度相等,∴DF=BE,∵四边形ABCD是菱形,∴∠B=∠D,AD=BC,AB∥DC,在△ADF与△CBE中,∴△ADF≌△CBE,∴∠DFA=∠BEC,∵AB∥DC,∴∠DFA=∠FAB,∴∠FAB=∠BEC,∴AF∥CE;(2)过D作DM⊥AB于M,连接GH,EF,∴DF=BE=t,∵AF∥CE,AB∥CD,∴四边形AECF是平行四边形,∵G、H是AF、CE的中点,∴GH∥AB,∵四边形EGFH是菱形,∴GH⊥EF,∴EF⊥AB,∠FEM=90°,∵DM⊥AB,∴DM∥EF,∴四边形DMEF是矩形,∴ME=DF=t,∵AD=4,∠DAB=60°,DM⊥AB,∴∴BE=4﹣2﹣t=t,∴t=1,(3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,∵四边形EHFG为矩形,∴EF=GH,∴EF2=GH2,即解得t=0,0<t<4,∴与原题设矛盾,∴不存在某个时刻t,使四边形EHFG为矩形.属于四边形的综合题,考查全等三角形的判定与性质,菱形的性质,矩形的判定等,掌握菱形的性质,矩形的判定是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,则斜边AB=2CD=1,则根据勾股定理即可求出BC的长.【详解】解:在Rt△ABC中,CD是斜边AB上的中线,CD=2,∴AB=2CD=1.∴BC===.故答案为:.本题主要考查直角三角形中斜边上的中线的性质及勾股定理,掌握直角三角形中斜边上的中线是斜边的一半是解题的关键.20、4.1【解析】
直接利用勾股定理得出菱形的边长,再利用菱形的面积求法得出答案.【详解】解:∵菱形的两条对角线分别为6cm和1cm,∴菱形的边长为:=5(cm),设菱形的高为:xcm,则5x=×6×1,解得:x=4.1.故答案为:4.1.此题主要考查了菱形的性质,正确得出菱形的边长是解题关键.21、a2bc.【解析】
解:观察得知,这三个分母都是单项式,确定这几个分式的最简公分母时,相同字母取次数最高的,不同字母连同它的指数都取着,系数取最小公倍数,所以它们的最简公分母是a2bc.故答案为:a2bc.考点:分式的通分.22、1【解析】
根据折线统计图,可得1到6月份的用电量的众数与中位数,相加求和即可.【详解】解:根据1到6月份用电量的折线统计图,可得150出现的次数最多,为2次,故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年电气控制系统设计的行业趋势
- 贾氏音标课件
- 2026年桥梁施工中的紧急事故处理策略
- 2026春招:销售代表试题及答案
- 2026春招:物流专员题目及答案
- 货运行业安全培训会课件
- 个性化健康管理与慢性病防治策略
- 护理人员心理素质提升与团队协作
- 2026年安庆师范大学单招职业技能考试参考题库带答案解析
- 2026年安徽电气工程职业技术学院高职单招职业适应性考试参考题库带答案解析
- 七年级上册道德与法治第1-4单元共4个单元复习教学设计
- 个人分红收款收据
- 人教版数学五年级上册《多边形的面积》单元作业设计()
- 肾素血管紧张素系统药理
- 海南省职校技能大赛(植物病虫害防治赛项)参考试题库(含答案)
- 银屑病慢病管理
- 成人失禁相关性皮炎的预防与护理-护理团标
- 克拉玛依市克拉玛依区2023-2024学年七年级上学期期末数学强化卷(含答案)
- 新时代五育融合的路径与方式
- 2023年江苏省普通高中学业水平合格性考试数学真题试卷含详解
- DL-T 2571.3-2022 水电站公用辅助设备检修规程 第3部分:水系统
评论
0/150
提交评论