2025届安徽省六安市高二数学第一学期期末监测试题含解析_第1页
2025届安徽省六安市高二数学第一学期期末监测试题含解析_第2页
2025届安徽省六安市高二数学第一学期期末监测试题含解析_第3页
2025届安徽省六安市高二数学第一学期期末监测试题含解析_第4页
2025届安徽省六安市高二数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省六安市高二数学第一学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列,,,,…,是其第()项A.17 B.18C.19 D.202.变量与的数据如表所示,其中缺少了一个数值,已知关于的线性回归方程为,则缺少的数值为()22232425262324▲2628A.24 B.25C.25.5 D.263.设集合,则AB=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}4.在等差数列中,,,则公差A.1 B.2C.3 D.45.设变量满足约束条件,则的最大值为()A.0 B.C.3 D.46.已知圆,若存在过点的直线与圆C相交于不同两点A,B,且,则实数a的取值范围是()A. B.C. D.7.已知直线m经过,两点,则直线m的斜率为()A.-2 B.C. D.28.若则()A.−2 B.−1C.1 D.29.若方程表示圆,则实数的取值范围为()A. B.C. D.10.某三棱锥的三视图如图所示,则该三棱锥内切球的表面积为A.B.C.D.11.直线l的方向向量为,且l过点,则点到l的距离为()A B.C. D.12.抛物线的焦点坐标为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某次实验得到如下7组数据,通过判断知道与具有线性相关性,其线性回归方程为,则______.(参考公式:)12345676.06.26.36.46.46.76.814.若无论实数取何值,直线与圆恒有两个公共点,则实数的取值范围为___________.15.已知,,,,使得成立,则实数a的取值范围是___________.16.已知,,且,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知向量,,且.(1)求满足上述条件的点M(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m(k≠0)相交于不同的两点P,Q,点A(0,1),当|AP|=|AQ|时,求实数m的取值范围.18.(12分)已知椭圆的离心率为,以坐标原点为圆心,以椭圆M的短半轴长为半径的圆与直线有且只有一个公共点(1)求椭圆M的标准方程;(2)过椭圆M的右焦点F的直线交椭圆M于A,B两点,过F且垂直于直线的直线交椭圆M于C,D两点,则是否存在实数使成立?若存在,求出的值;若不存在,请说明理由19.(12分)已知椭圆的方程为,双曲线的左、右焦点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点(1)求双曲线的方程;(2)若直线与双曲线恒有两个不同的交点和,且(其中为原点),求的取值范围20.(12分)【阅读材料1】我们在研究两个变量之间的相关关系时,往往先选取若干个样本点(),(),……,(),将样本点画在平面直角坐标系内,就得到样本的散点图.观察散点图,如果所有样本点都落在某一条直线附近,变量之间就具有线性相关关系,如果所有的样本点都落在某一非线性函数图象附近,变量之间就有非线性相关关系.在统计学中经常选择线性或非线性(函数)回归模型来刻画相关关系,并且可以用适当的方法求出回归模型的方程,还常用相关指数R2来刻画回归的效果,相关指数R2的计算公式为:当R2越大时,回归方程的拟合效果越好;当R2越小时,回归方程的拟合效果越差,R2是常用的选择模型的指标之一,在实际应用中应该尽量选择R2较大的回归模型.【阅读材料2】2021年6月17日9时22分,我国酒泉卫星发射中心用长征二号F遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪胺3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A型材料是神舟十二号的重要零件,该材料应用前景十分广泛,该公司为了将A型材料更好地投入商用,拟对A型材料进行应用改造,根据市场调研与模拟,得到应用改造投入x(亿元)与产品的直接收益y(亿元)的数据统计如下:序号123456789101112x2346810132122232425y1522274048546068.56867.56665当0<x≤13时,建立了与的两个回归模型:模型①:;模型②:;当x>13时,确定y与x满足的线性回归直线方程为.根据以上阅读材料,解答以下问题:(1)根据下列表格中的数据,比较当0<x≤13时模型①,②的相关指数R2的大小,并选择拟合效果更好的模型.回归模型模型①模型②回归方程79.1320.2(2)当应用改造的投入为20亿元时,以回归直线方程为预测依据,计算公司的收益约为多少.附:①若最小二乘法求得回归直线方程为,则;②③,当时,.21.(12分)如图,已知圆锥SO底面圆的半径r=1,直径AB与直径CD垂直,母线SA与底面所成的角为.(1)求圆锥SO的侧面积;(2)若E为母线SA的中点,求二面角E-CD-B的大小.(结果用反三角函数值表示)22.(10分)已知抛物线y2=2px(p>0)的焦点为F,过F且与x轴垂直的直线交该抛物线于A,B两点,|AB|=4(1)求抛物线的方程;(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意,分析归纳可得该数列可以写成,,,……,,可得该数列的通项公式,分析可得答案.【详解】解:根据题意,数列,,,,…,,可写成,,,……,,对于,即,为该数列的第20项;故选:D.【点睛】此题考查了由数列的项归纳出数列的通项公式,考查归纳能力,属于基础题.2、A【解析】可设出缺少的数值,利用表中的数据,分别表示出、,将样本中心点带入回归方程,即可求得参数.【详解】设缺少的数值为,则,,因为回归直线方程经过样本点的中心,所以,解得.故选:A3、B【解析】按交集定义求解即可.【详解】AB={2,3}故选:B4、B【解析】由,将转化为表示,结合,即可求解.【详解】,.故选:B.【点睛】本题考查等差数列基本量的计算,属于基础题.5、A【解析】先画出约束条件所表示的平面区域,然后根据目标函数的几何意义,即可求出目标函数的最大值.【详解】解:满足约束条件的可行域如下图所示:由,可得,因为目标函数,即,表示斜率为,截距为的直线,由图可知,当直线经过时截距取得最小值,即取得最大值,所以的最大值为,故选:A.6、D【解析】根据圆的割线定理,结合圆的性质进行求解即可.【详解】圆的圆心坐标为:,半径,由圆的割线定理可知:,显然有,或,因为,所以,于是有,因为,所以,而,或,所以,故选:D7、A【解析】根据斜率公式求得正确答案.【详解】直线的斜率为:.故选:A8、B【解析】分子分母同除以,化弦为切,代入即得结果.【详解】由题意,分子分母同除以,可得.故选:B.9、D【解析】将方程化为标准式即可.【详解】方程化为标准式得,则.故选:D.10、A【解析】由三视图可知该几何体是一个三棱锥,根据等积法求出几何体内切球的半径,再计算内切球的表面积【详解】解:由三视图知该几何体是一个三棱锥,放入棱长为2的正方体中,如图所示:设三棱锥内切球的半径为,则由等体积法得,解得,所以该三棱锥内切球的表面积为故选:A【点睛】本题考查了由三视图求三棱锥内切球表面积的应用问题,属于中档题11、C【解析】利用向量投影和勾股定理即可计算.【详解】∵,∴又,∴在方向上的投影,∴P到l距离故选:C.12、D【解析】抛物线的标准方程为,从而可得其焦点坐标【详解】抛物线的标准方程为,故其焦点坐标为,故选D.【点睛】本题考查抛物线的性质,属基础题二、填空题:本题共4小题,每小题5分,共20分。13、9##【解析】求得样本中心点的坐标,代入回归直线,即可求得.详解】根据表格数据可得:故,解得.故答案为:.14、【解析】根据点到直线的距离公式得到,根据,解不等式得到答案.【详解】依题意有圆心到直线的距离,即,又无论取何值,,故,故.故答案:15、【解析】由题可得,求导可得的单调性,将的最小值代入,即得.【详解】∵,,使得成立,∴由,得,当时,,∴在区间上单调递减,在区间上单调递增,∴函数在区间上的最小值为又在上单调递增,∴函数在区间上的最小值为,∴,即实数的取值范围是故答案为:.16、4【解析】利用“1”的妙用,运用基本不等式即可求解.【详解】∵,即,∴又∵,,∴,当且仅当且,即,时,等号成立,则的最小值为4.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)+y2=1;(2).【解析】(1)应用向量垂直的坐标表示得x2+3y2=3,即可写出M的轨迹C的方程;(2)由直线与曲线C交于不同的两点P(x1,y1),Q(x2,y2),设直线y=kx+m(k≠0),联立方程整理所得方程有,且由根与系数关系用m,k表示x1+x2,x1x2,若N为PQ的中点结合|AP|=|AQ|知PQ⊥AN可得m、k的等量关系,结合即可求m的范围.【详解】(1)∵,即,∴,即有x2+3y2=3,即点M(x,y)的轨迹C的方程为+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲线C与直线y=kx+m(k≠0)相交于不同的两点,∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=.设P(x1,y1),Q(x2,y2),线段PQ的中点N(x0,y0),则.∵|AP|=|AQ|,即知PQ⊥AN,设kAN表示直线AN的斜率,又k≠0,∴kANk=-1.即·k=-1,得3k2=2m-1②,而3k2>0,有m>.将②代入①得2m1m2+1>0,即2m<0,解得0<m<2,∴m的取值范围为.【点睛】思路点睛:1、由向量垂直,结合其坐标表示得到关于x,y的方程,写出曲线C的标准方程即可.2、由直线与曲线C相交,联立方程有,由|AP|=|AQ|得直线的垂直关系,即斜率之积为-1,进而可求参数的范围.18、(1)(2)存在,【解析】(1)求出后可得椭圆的标准方程.(2)设直线,联立直线方程和椭圆方程,消元后利用韦达定理可用表示,从而可求的值.【小问1详解】据题意,得,∴,∴所求椭圆M的标准方程为【小问2详解】据(1)求解知,点F坐标为若直线的斜率存在,且不等于0,设直线据得设,则,∴同理可求知,∴,∴,即此时存满足题设;若直线的斜率不存在,则;若直线的斜率为0,则,此时若,则综上,存在实数,且使19、(1);(2)【解析】(1)求出椭圆的焦点和顶点,即得双曲线的顶点和焦点,从而易求得标准方程;(2)将代入,得由直线与双曲线交于不同的两点,得的取值范围,设,由韦达定理得则代入可求得的范围【详解】(1)设双曲线的方程为,则,再由,得故的方程为(2)将代入,得由直线与双曲线交于不同的两点,得①设则又,得,,即,解得②由①②得<k2<1,故的取值范围【点睛】本题考查双曲线的标准方程,考查直线与双曲线相交中的范围问题.应注意:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围(4)利用已知的不等关系构造不等式,从而求出参数的取值范围(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围20、(1)模型②拟合效果更好(2)69.1(亿元)【解析】(1)分别求出两个模型的相关指数,在进行比较即可,(2)利用最小二乘法求出回归方程,再求收益即可【小问1详解】对于模型①,因为,故对应的,故对应的相关指数,对于模型②,同理对应的相关指数,故模型②拟合效果更好【小问2详解】当时,后五组的,由最小二乘法可得,所以当时,确定y与x满足的线性回归直线方程为故当投入20亿元时,预测公司的收益约为:(亿元)21、(1)(2)【解析】(1)先根据母线与底面的夹角求出圆锥的母线长,然后根据圆锥的侧面积公式即可(2)利用三角形的中位线性质,先求出二面角,然后利用二面角与二面角的互补关系即可求得【小问1详解】根据母线SA与底面所成的角为,且底面圆的半径可得:则圆锥的侧面积为:【小问2详解】如图所示,过点作底面的垂线交于,连接,则为的中位线则有:,,易知,则,又直径AB与直径CD垂直,则则有:为二面角可得:又二面角与二面角互为补角,则二面角的余弦值为故二面角大小为22、(1);(2).【解析】(1)根据抛物线的定义以及抛物线通径的性质可得,从而可得结果;(2)设直线的方程为,代入,得,利用弦长公式,结合韦达定理可得的值,由点到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论