2025届湖北省巴东三中高二上数学期末质量检测模拟试题含解析_第1页
2025届湖北省巴东三中高二上数学期末质量检测模拟试题含解析_第2页
2025届湖北省巴东三中高二上数学期末质量检测模拟试题含解析_第3页
2025届湖北省巴东三中高二上数学期末质量检测模拟试题含解析_第4页
2025届湖北省巴东三中高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省巴东三中高二上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线方程为,则其倾斜角为()A.30° B.60°C.120° D.150°2.如图,样本和分别取自两个不同的总体,它们的平均数分别为和,标准差分别为和,则()AB.C.D.3.若直线被圆截得的弦长为,则的最小值为()A. B.C. D.4.曲线y=lnx在点M处的切线过原点,则该切线的斜率为()A.1 B.eC.-1 D.5.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数相同的是()A.极差 B.方差C.平均数 D.中位数6.命题“”为真命题一个充分不必要条件是()A. B.C. D.7.已知双曲线,其渐近线方程为,则a的值为()A. B.C. D.28.若“”是“”的充分不必要条件,则实数m的值为()A.1 B.C.或1 D.或9.“”是“方程为双曲线方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知双曲线的焦点为,,其渐近线上横坐标为的点满足,则()A. B.C.2 D.411.在中,角,,所对的边分别为,,,若,则的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不确定12.为比较甲、乙两地某月时的气温状况,随机选取该月中的天,将这天中时的气温数据(单位:℃)制成如图所示的茎叶图(十位数字为茎,个位数字为叶).考虑以下结论:①甲地该月时的平均气温低于乙地该月时的平均气温;②甲地该月时的平均气温高于乙地该月时的平均气温;③甲地该月时的气温的标准差小于乙地该月时的气温的标准差;④甲地该月时的气温的标准差大于乙地该月时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③ B.①④C.②③ D.②④二、填空题:本题共4小题,每小题5分,共20分。13.若圆柱的高、底面半径均为1,则其表面积为___________14.如图,已知椭圆+y2=1的左焦点为F,O为坐标原点,设过点F且不与坐标轴垂直的直线交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,则点G横坐标的取值范围为________15.已知双曲线的两条渐近线的夹角为,则双曲线的实轴长为____16.如图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1600个点,其中落入白色部分的有700个点,据此可估计黑色部分的面积为______________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2020年8月,总书记对制止餐饮浪费行为作出重要指示,要求进一步加强宣传教育,切实培养节约习惯,在全社会营造浪费可耻、节约光荣的氛围.为贯彻总书记指示,大庆市某学校食堂从学生中招募志愿者,协助食堂宣传节约粮食的相关活动.现已有高一63人、高二42人,高三21人报名参加志愿活动.根据活动安排,拟采用分层抽样的方法,从已报名的志愿者中抽取12名志愿者,参加为期20天的第一期志愿活动(1)第一期志愿活动需从高一、高二、高三报名的学生中各抽取多少人?(2)现在要从第一期志愿者中的高二、高三学生中抽取2人粘贴宣传标语,求抽出两人都是高二学生的概率是多少?(3)食堂每天约有400人就餐,其中一组志愿者的任务是记录学生每天倒掉的剩菜剩饭的重量(单位:公斤),以10天为单位来衡量宣传节约粮食的效果.在一个周期内,这组志愿者记录的数据如下:前10天剩菜剩饭的重量为:后天剩菜剩饭的重量为:借助统计中的图、表、数字特征等知识,分析宣传节约粮食活动的效果(选择一种方法进行说明即可)18.(12分)已知数列为正项等比数列,满足,,数列满足(1)求数列,的通项公式;(2)若数列的前n项和为,数列满足,证明:数列的前n项和19.(12分)已知椭圆的中心在原点,对称轴为坐标轴且焦点在轴上,抛物线:,若抛物线的焦点在椭圆上,且椭圆的离心率为.(1)求椭圆的方程;(2)已知斜率存在且不为零的直线满足:与椭圆相交于不同两点、,与直线相交于点.若椭圆上一动点满足:,,且存在点,使得恒为定值,求的值.20.(12分)某企业计划新购买台设备,并将购买的设备分配给名年龄不同(视为技术水平不同)的技工加工一批模具,因技术水平不同而加工出的产品数量不同,故产生的经济效益也不同.若用变量表示不同技工的年龄,变量为相应的效益值(元),根据以往统计经验,他们的工作效益满足最小二乘法,且关于的线性回归方程为(1)试预测一名年龄为岁的技工使用该设备所产生的经济效益;(2)试根据的值判断使用该批设备的技工人员所产生的的效益与技工年龄的相关性强弱(,则认为与线性相关性很强;,则认为与线性相关性不强);(3)若这批设备有两道独立运行的生产工序,且两道工序出现故障的概率依次是,.若两道工序都没有出现故障,则生产成本不增加;若工序出现故障,则生产成本增加万元;若工序出现故障,则生产成本增加万元;若两道工序都出现故障,则生产成本增加万元.求这批设备增加的生产成本的期望参考数据:,参考公式:回归直线的斜率和截距的最小二乘估计分别为,,.21.(12分)如图,在直三棱柱中,,,D为的中点(1)求证:平面;(2)求平面与平面的夹角的余弦值;(3)若E为的中点,求与所成的角22.(10分)2022北京冬奥会即将开始,北京某大学鼓励学生积极参与志愿者的选拔.某学院有6名学生通过了志愿者选拔,其中4名男生,2名女生(1)若从中挑选2名志愿者,求入选者正好是一名男生和一名女生的概率;(2)若从6名志愿者中任选3人负责滑雪项目服务岗位,那么现将6人分为A、B两组进行滑雪项目相关知识及志愿者服务知识竞赛,共赛10局.A、B两组分数(单位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139从统计学角度看,应选择哪个组更合适?理由是什么?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由直线方程可得斜率,根据斜率与倾斜角的关系即可求倾斜角大小.【详解】由题设,直线斜率,若直线的倾斜角为,则,∵,∴.故选:D2、B【解析】直接根据图表得到答案.【详解】根据图表:样本数据均小于等于10,样本数据均大于等于10,故;样本数据波动大于样本数据,故.故选:B.3、D【解析】先根据已知条件得出,再利用基本不等式求的最小值即可.【详解】圆的标准方程为,圆心为,半径为,若直线被截得弦长为,说明圆心在直线:上,即,即,∴,当且仅当,即时,等号成立故选:D.【点睛】本题主要考查利用基本不等式求最值,本题关键是求出,属常规考题.4、D【解析】设出点坐标,结合导数列方程,由此求得切点坐标并求得切线的斜率.【详解】设切点为,,故在点的切线的斜率为,所以,所以切点为,切线的斜率为.故选:D5、C【解析】根据茎叶图依次计算甲和乙的平均数、方差、中位数和极差即可得到结果.【详解】甲的平均数为:;乙的平均数为:;甲和乙的平均数相同;甲的方差为:;乙的方差为:;甲和乙的方差不相同;甲的极差为:;乙的极差为:;甲和乙的极差不相同;甲的中位数为:;乙的中位数为:;甲和乙的中位数不相同.故选:C.6、B【解析】求解命题为真命题的充要条件,再利用集合包含关系判断【详解】命题“”为真命题,则≤1,只有是的真子集,故选项B符合题意故选:B7、A【解析】由双曲线方程,根据其渐近线方程有,求参数值即可.【详解】由渐近线,结合双曲线方程,∴,可得.故选:A.8、B【解析】利用定义法进行判断.【详解】把代入,得:,解得:或.当时,可化为:,解得:,此时“”是“”的充要条件,应舍去;当时,可化为:,解得:或,此时“”是“”的充分不必要条件.故.故选:B9、C【解析】先求出方程表示双曲线时满足的条件,然后根据“小推大”的原则进行判断即可.【详解】因方程为双曲线方程,所以,所以“”是“方程为双曲线方程”的充要条件.故选:C.10、B【解析】由题意可设,则,再由,可得,从而可求出的值【详解】解:双曲线的渐近线方程为,故设,设,则,因为,所以,即,所以,因为,所以,因为,所以,故选:B11、C【解析】由正弦定理得出,再由余弦定理得出,从而判断为钝角得出的形状.【详解】因为,所以,所以,所以的形状为钝角三角形.故选:C12、B【解析】根据茎叶图数据求出平均数及标准差即可【详解】由茎叶图知甲地该月时的平均气温为,标准差为由茎叶图知乙地该月时的平均气温为,标准差为则甲地该月14时的平均气温低于乙地该月14时的平均气温,故①正确,乙平均气温的标准差小于甲的标准差,故④正确,故正确的是①④,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据圆柱表面积公式求解即可.【详解】根据题意得到圆柱的高,底面半径,则表面积.故答案为:14、【解析】设直线的方程为,设点、,将直线的方程与椭圆的方程联立,列出韦达定理,求出线段的垂直平分线方程,可求得点的横坐标,利用不等式的基本性质可求得点的横坐标的取值范围.【详解】设直线的方程为,联立,整理可得,因为直线过椭圆的左焦点,所以方程有两个不相等的实根设点、,设的中点为,则,,直线的垂直平分线的方程为,令,则.因为,所以故点的横坐标的取值范围.故答案为:15、【解析】根据已知条件求得,由此求得实轴长.【详解】由于,双曲线的渐近线方程为,所以双曲线的渐近线与轴夹角小于,由得,实轴长故答案为:16、9【解析】先根据点数求解概率,再结合几何概型求解黑色部分的面积【详解】由题设可估计落入黑色部分概率设黑色部分的面积为,由几何概型计算公式可得解得故答案为:9三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)6,4,2;(2);(3)答案见解析.【解析】(1)先求出抽样比,然后每次按比例抽取即可求出;(2)先求出抽出两人的基本事件,再求出两人都是高二学生包含的基本事件,即可求出概率;(3)可求出平均值进行判断;也可画出茎叶图观察判断.【详解】解:(1)报名的学生共有126人,抽取的比例为,所以高一抽取人,高二抽取人,高三抽取人.(2)记高二四个学生为1,2,3,4,高三两个学生为5,6,抽出两人表示为(x,y),则抽出两人的基本事件为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个基本事件,其中高二学生都在同一组包含(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个基本事件.记抽出两人都是高二学生为事件,则,所以高二学生都在同一组的概率是.(3)法一:(数字特征)前10天的平均值为23.5,后10天的平均值为20.5,因为20.5<23.5,所以宣传节约粮食活动的效果很好.法二:(茎叶图)画出茎叶图因为前10天的重量集中在23、24附近,而后10天的重量集中在20附近,所以节约宣传后剩饭剩菜明显减少,宣传效果很好.18、(1),(2)证明见解析【解析】(1)将已知条件用首项和公比表示,联立方程组即可求解数列的通项公式,然后由对数的运算性质即可得数列的通项公式;(2)由(1)求出,然后利用裂项相消求和法求出数列的前n项和,即可证明.【小问1详解】解:设等比数列的公比为,由题意,得,即,解得或(舍),又,所以,所以,;【小问2详解】解:,所以,所以19、(1)(2)【解析】(1)先求得椭圆的,代入公式即可求得椭圆的方程;(2)以设而不求的方法得到两根和,再由条件,得到四边形为平行四边形,并以向量方式进行等价转化,再与恒为定值进行联系,即可求得的值.【小问1详解】由条件可设椭圆:,因为抛物线:的焦点为,所以,解得因为椭圆离心率为,所以,则,故椭圆的方程为【小问2详解】设直线:,,,把直线的方程代入椭圆的方程,可得,所以,因为,,所以四边形为平行四边形,得,即,得由在椭圆上可得,,即因为,又所以,所以将代入得,所以,即.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。20、(1)元;(2)使用该批设备的技工人员所产生的的效益与技工年龄的相关性强;(3)0.13万元.【解析】(1)直接把代入线性回归方程即得解;(2)先求出,再代公式求出相关系数比较即得解;(3)设增加的生产成本为ξ(万元),则ξ的可能取值为0,2,3,5,求出对应的概率即得解.小问1详解】解:当时,.所以预测一名年龄为岁的技工使用该设备所产生的经济效益为元.【小问2详解】解:由题得,所以,所以.因为,所以与线性相关性很强.所以使用该批设备的技工人员所产生的的效益与技工年龄的相关性强.【小问3详解】解:设增加的生产成本为ξ(万元),则ξ的可能取值为0,2,3,5P(ξ=0)=(1﹣0.02)×(1﹣0.03)=0.9506,P(ξ=2)=0.02×(1﹣0.03)=0.0194,P(ξ=3)=(1﹣0.02)×0.03=0.0294,P(ξ=5)=0.02×0.03=0.0006所以Eξ=0×0.9506+2×0.0194+3×0.0294+5×0.0006=0.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论